IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i22p4670-d1281781.html
   My bibliography  Save this article

Portfolio Construction: A Network Approach

Author

Listed:
  • Evangelos Ioannidis

    (Economics Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

  • Iordanis Sarikeisoglou

    (Economics Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

  • Georgios Angelidis

    (Economics Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

Abstract

A key parameter when investing is Time Horizon . One of the biggest mistakes investors make is not aligning the timeline of their goals with their investment portfolio. In other words, time horizons determine the investment portfolio you should construct. We examine which portfolios are the best for long-term investing, short-term investing, and intraday trading. This study presents a novel approach for portfolio construction based on Network Science. We use daily returns of stocks that compose the Dow Jones Industrial Average (DJIA) for a 25-year period from 1998 to 2022. Stock networks are estimated from (i) Pearson correlation (undirected linear statistical correlations), as well as (ii) Transfer Entropy (directed non-linear causal relationships). Portfolios are constructed in two main ways: (a) only four stocks are selected, depending on their centrality, with Markowitz investing weights, or (b) all stocks are selected with centrality-based investing weights. Portfolio performance is evaluated in terms of the following indicators: return, risk (total and systematic), and risk-adjusted return (Sharpe ratio and Treynor ratio). Results are compared against two benchmarks: the index DJIA, and the Markowitz portfolio based on Modern Portfolio Theory. The key findings are as follows: (1) Peripheral portfolios of low centrality stocks based on Pearson correlation network are the best in the long-term, achieving an extremely high cumulative return of around 3000% as well as high risk-adjusted return; (2) Markowitz portfolio is the safest in the long-term, while on the contrary, central portfolios of high centrality stocks based on Pearson correlation network are the riskiest; (3) In times of crisis, no portfolio is always the best. However, portfolios based on Transfer Entropy network perform better in most of the crises; (4) Portfolios of all stocks selected with centrality-based investing weights outperform in both short-term investing and intraday trading. A stock brokerage company may utilize the above findings of our work to enhance its portfolio management services.

Suggested Citation

  • Evangelos Ioannidis & Iordanis Sarikeisoglou & Georgios Angelidis, 2023. "Portfolio Construction: A Network Approach," Mathematics, MDPI, vol. 11(22), pages 1-24, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4670-:d:1281781
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/22/4670/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/22/4670/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    2. Matthew Hood & Farooq Malik, 2013. "Is gold the best hedge and a safe haven under changing stock market volatility?," Review of Financial Economics, John Wiley & Sons, vol. 22(2), pages 47-52, April.
    3. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    4. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    5. Garas, Antonios & Argyrakis, Panos, 2007. "Correlation study of the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 399-410.
    6. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    7. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    8. John Lintner, 1965. "Security Prices, Risk, And Maximal Gains From Diversification," Journal of Finance, American Finance Association, vol. 20(4), pages 587-615, December.
    9. Raffaele Della Croce & Fiona Stewart & Juan Yermo, 2011. "Promoting Longer-Term Investment by Institutional Investors: Selected Issues and Policies," OECD Journal: Financial Market Trends, OECD Publishing, vol. 2011(1), pages 145-164.
    10. John L. Evans & Stephen H. Archer, 1968. "Diversification And The Reduction Of Dispersion: An Empirical Analysis," Journal of Finance, American Finance Association, vol. 23(5), pages 761-767, December.
    11. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    12. Meryem Masmoudi & Fouad Ben Abdelaziz, 2018. "Portfolio selection problem: a review of deterministic and stochastic multiple objective programming models," Annals of Operations Research, Springer, vol. 267(1), pages 335-352, August.
    13. Esmaeilpour Moghadam, Hadi & Mohammadi, Teymour & Feghhi Kashani, Mohammad & Shakeri, Abbas, 2019. "Complex networks analysis in Iran stock market: The application of centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    14. Statman, Meir, 1987. "How Many Stocks Make a Diversified Portfolio?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 353-363, September.
    15. Dimpfl, Thomas & Peter, Franziska J., 2014. "The impact of the financial crisis on transatlantic information flows: An intraday analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 1-13.
    16. Ashadun Nobi & Sungmin Lee & Doo Hwan Kim & Jae Woo Lee, 2014. "Correlation and Network Topologies in Global and Local Stock Indices," Papers 1402.1552, arXiv.org.
    17. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    18. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    19. Tihana Škrinjarić & Derick Quintino & Paulo Ferreira, 2021. "Transfer Entropy Approach for Portfolio Optimization: An Empirical Approach for CESEE Markets," JRFM, MDPI, vol. 14(8), pages 1-12, August.
    20. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    21. Jakub Danko & Vincent Soltés & Tomas Bindzar, 2022. "Portfolio Creation Using Graph Characteristics and Testing Its Performance," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 18(1), pages 7-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Juan Zhan & William Rea & Alethea Rea, 2016. "Stock Selection as a Problem in Phylogenetics—Evidence from the ASX," IJFS, MDPI, vol. 4(4), pages 1-19, September.
    2. Tienyu Hwang & Simon Gao & Heather Owen, 2012. "A two‐pass model study of the CAPM: evidence from the UK stock market," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 29(2), pages 89-104, June.
    3. Hannah Cheng Juan Zhan & William Rea & Alethea Rea, 2015. "A Comparision of Three Network Portfolio Selection Methods -- Evidence from the Dow Jones," Papers 1512.01905, arXiv.org.
    4. Miffre, Joëlle & Brooks, Chris & Li, Xiafei, 2013. "Idiosyncratic volatility and the pricing of poorly-diversified portfolios," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 78-85.
    5. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    6. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    7. Azra Zaimovic & Adna Omanovic & Almira Arnaut-Berilo, 2021. "How Many Stocks Are Sufficient for Equity Portfolio Diversification? A Review of the Literature," JRFM, MDPI, vol. 14(11), pages 1-30, November.
    8. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    9. Guo, Hui & Savickas, Robert & Wang, Zijun & Yang, Jian, 2009. "Is the Value Premium a Proxy for Time-Varying Investment Opportunities? Some Time-Series Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(1), pages 133-154, February.
    10. C. James Hueng & Ruey Yau, 2006. "Investor preferences and portfolio selection: is diversification an appropriate strategy?," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 255-271.
    11. Eom, Cheoljun, 2017. "Two-faced property of a market factor in asset pricing and diversification effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 190-199.
    12. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    13. Bin Liu & Amalia Di Iorio, 2016. "The pricing of idiosyncratic volatility: An Australian study," Australian Journal of Management, Australian School of Business, vol. 41(2), pages 353-375, May.
    14. de Carvalho, Pablo Jose Campos & Gupta, Aparna, 2018. "A network approach to unravel asset price comovement using minimal dependence structure," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 119-132.
    15. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    16. Marie Brière & Bastien Drut & Valérie Mignon & Kim Oosterlinck & Ariane Szafarz, 2013. "Is the Market Portfolio Efficient? A New Test of Mean-Variance Efficiency when all Assets are Risky," Finance, Presses universitaires de Grenoble, vol. 34(1), pages 7-41.
    17. Gerson N. Cardoso & Geraldo E. Silva, 2024. "Electoral influences on the Brazilian B3 data correlation network," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 251-272, January.
    18. Vitali Alexeev & Mardi Dungey & Wenying Yao, 2016. "Continuous and Jump Betas: Implications for Portfolio Diversification," Econometrics, MDPI, vol. 4(2), pages 1-15, June.
    19. Marie Brière & Bastien Drut & Valérie Mignon & Kim Oosterlinck & Ariane Szafarz, 2011. "Is the Market Portfolio Efficient? A New Test to Revisit the Roll (1977) versus Levy and Roll (2010) Controversy," Working Papers hal-04140988, HAL.
    20. Ana Isabel Ramos Domingues & António de Melo da Costa Cerqueira & Elísio Fernando Moreira Brandão, 2016. "Idiosyncratic Volatility and Earnings Quality: Evidence from United Kingdom," FEP Working Papers 579, Universidade do Porto, Faculdade de Economia do Porto.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4670-:d:1281781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.