IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v7y2018i4p124-d177195.html
   My bibliography  Save this article

Predicting the Potential Impact of Climate Change on Carbon Stock in Semi-Arid West African Savannas

Author

Listed:
  • Kangbéni Dimobe

    (West African Science Service Centre for Climate Change and Adapted Land Use (WASCAL), Competence Centre, 06 BP 9507 Ouagadougou 06, Burkina Faso
    Laboratory of Plant Biology and Ecology, University Ouaga I Pr Joseph Ki-Zerbo, UFR/SVT, 03 BP 7021 Ouagadougou 03, Burkina Faso)

  • Jean Léandre N’djoré Kouakou

    (UFR des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire)

  • Jérôme E. Tondoh

    (West African Science Service Centre for Climate Change and Adapted Land Use (WASCAL), Competence Centre, 06 BP 9507 Ouagadougou 06, Burkina Faso
    UFR des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire)

  • Benewinde J.-B. Zoungrana

    (West African Science Service Centre for Climate Change and Adapted Land Use (WASCAL), Competence Centre, 06 BP 9507 Ouagadougou 06, Burkina Faso)

  • Gerald Forkuor

    (West African Science Service Centre for Climate Change and Adapted Land Use (WASCAL), Competence Centre, 06 BP 9507 Ouagadougou 06, Burkina Faso)

  • Korotimi Ouédraogo

    (Laboratory of Plant Biology and Ecology, University Ouaga I Pr Joseph Ki-Zerbo, UFR/SVT, 03 BP 7021 Ouagadougou 03, Burkina Faso)

Abstract

West African savannas are experiencing rapid land cover change that threatens biodiversity and affects ecosystem productivity through the loss of habitat and biomass, and carbon emissions into the atmosphere exacerbating climate change effects. Therefore, reducing carbon emissions from deforestation and forest degradation in these areas is critical in the efforts to combat climate change. For such restorative actions to be successful, they must be grounded on a clear knowledge of the extent to which climate change affects carbon storage in soil and biomass according to different land uses. The current study was undertaken in semi-arid savannas in Dano, southwestern Burkina Faso, with the threefold objective of: (i) identifying the main land use and land cover categories (LULCc) in a watershed; (ii) assessing the carbon stocks (biomass and soil) in the selected LULCc; and (iii) predicting the effects of climate change on the spatial distribution of the carbon stock. Dendrometric data (Diameter at Breast Height (DBH) and height) of woody species and soil samples were measured and collected, respectively, in 43 plots, each measuring 50 × 20 m. Tree biomass carbon stocks were calculated using allometric equations while soil organic carbon (SOC) stocks were measured at two depths (0–20 and 20–50 cm). To assess the impact of climate change on carbon stocks, geographical location records of carbon stocks, remote sensing spectral bands, topographic data, and bioclimatic variables were used. For projections of future climatic conditions, predictions from two climate models (MPI-ESM-MR and HadGEM2-ES) of CMIP5 were used under Representative Concentration Pathway (RCP) 8.5 and modeling was performed using random forest regression. Results showed that the most dominant LULCc are cropland (37.2%) and tree savannas (35.51%). Carbon stocks in woody biomass were higher in woodland (10.2 ± 6.4 Mg·ha −1 ) and gallery forests (7.75 ± 4.05 Mg·ha −1 ), while the lowest values were recorded in shrub savannas (0.9 ± 1.2 Mg·ha −1 ) and tree savannas (1.6 ± 0.6 Mg·ha −1 ). The highest SOC stock was recorded in gallery forests (30.2 ± 15.6 Mg·ha −1 ) and the lowest in the cropland (14.9 ± 5.7 Mg·ha −1 ). Based on modeling results, it appears clearly that climate change might have an impact on carbon stock at horizon 2070 by decreasing the storage capacity of various land units which are currently suitable. The decrease was more important under HadGEM2-ES (90.0%) and less under MPI-ESM-MR (89.4%). These findings call for smart and sustainable land use management practices in the study area to unlock the potential of these landscapes to sequestering carbon.

Suggested Citation

  • Kangbéni Dimobe & Jean Léandre N’djoré Kouakou & Jérôme E. Tondoh & Benewinde J.-B. Zoungrana & Gerald Forkuor & Korotimi Ouédraogo, 2018. "Predicting the Potential Impact of Climate Change on Carbon Stock in Semi-Arid West African Savannas," Land, MDPI, vol. 7(4), pages 1-21, October.
  • Handle: RePEc:gam:jlands:v:7:y:2018:i:4:p:124-:d:177195
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/7/4/124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/7/4/124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gerald Forkuor & Ozias K L Hounkpatin & Gerhard Welp & Michael Thiel, 2017. "High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
    2. A. Baccini & S. J. Goetz & W. S. Walker & N. T. Laporte & M. Sun & D. Sulla-Menashe & J. Hackler & P. S. A. Beck & R. Dubayah & M. A. Friedl & S. Samanta & R. A. Houghton, 2012. "Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps," Nature Climate Change, Nature, vol. 2(3), pages 182-185, March.
    3. Law, Elizabeth A. & Bryan, Brett A. & Torabi, Nooshin & Bekessy, Sarah A. & McAlpine, Clive A. & Wilson, Kerrie A., 2015. "Measurement matters in managing landscape carbon," Ecosystem Services, Elsevier, vol. 13(C), pages 6-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minerva Singh & Luitgard Schwendenmann & Gang Wang & Maria Fernanda Adame & Luís Junior Comissario Mandlate, 2022. "Changes in Mangrove Carbon Stocks and Exposure to Sea Level Rise (SLR) under Future Climate Scenarios," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    2. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    2. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    3. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).
    4. Paulo Eduardo Teodoro & Luciano de Souza Maria & Jéssica Marciella Almeida Rodrigues & Adriana de Avila e Silva & Maiara Cristina Metzdorf da Silva & Samara Santos de Souza & Fernando Saragosa Rossi &, 2022. "Wildfire Incidence throughout the Brazilian Pantanal Is Driven by Local Climate Rather Than Bovine Stocking Density," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    5. Joseph Mascaro & Gregory P Asner & David E Knapp & Ty Kennedy-Bowdoin & Roberta E Martin & Christopher Anderson & Mark Higgins & K Dana Chadwick, 2014. "A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    6. Kukkonen, M.O. & Khamis, M. & Muhammad, M.J. & Käyhkö, N. & Luoto, M., 2022. "Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania," Land Use Policy, Elsevier, vol. 112(C).
    7. Zepharovich, Elena & Ceddia, M. Graziano & Rist, Stephan, 2021. "Social multi-criteria evaluation of land-use scenarios in the Chaco Salteño: Complementing the three-pillar sustainability approach with environmental justice," Land Use Policy, Elsevier, vol. 101(C).
    8. Rulli, Maria Cristina & Casirati, Stefano & Dell’Angelo, Jampel & Davis, Kyle Frankel & Passera, Corrado & D’Odorico, Paolo, 2019. "Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 499-512.
    9. Guillermo Martínez Pastur & Marie-Claire Aravena Acuña & Jimena E. Chaves & Juan M. Cellini & Eduarda M. O. Silveira & Julián Rodriguez-Souilla & Axel von Müller & Ludmila La Manna & María V. Lencinas, 2023. "Nitrogenous and Phosphorus Soil Contents in Tierra del Fuego Forests: Relationships with Soil Organic Carbon, Climate, Vegetation and Landscape Metrics," Land, MDPI, vol. 12(5), pages 1-18, April.
    10. Mangani, Andrea, 2021. "When does print media address deforestation? A quantitative analysis of major newspapers from US, UK, and Australia," Forest Policy and Economics, Elsevier, vol. 130(C).
    11. World Bank, 2017. "Brazil’s INDC Restoration and Reforestation Target," World Bank Publications - Reports 28588, The World Bank Group.
    12. Murphy, David M. A. & Berazneva, Julia & Lee, David R., 2015. "Fuelwood Source Substitution and Shadow Prices in Western Kenya," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205084, Agricultural and Applied Economics Association.
    13. Federico E. Alice‐Guier & Frits Mohren & Pieter A. Zuidema, 2020. "The life cycle carbon balance of selective logging in tropical forests of Costa Rica," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 534-547, June.
    14. Araujo, Rafael & Costa, Francisco J M & Sant'Anna, Marcelo, 2020. "Efficient Forestation in the Brazilian Amazon: Evidence from a Dynamic Model," SocArXiv 8yfr7, Center for Open Science.
    15. Jules Degila & Ida Sèmévo Tognisse & Anne-Carole Honfoga & Sèton Calmette Ariane Houetohossou & Fréjus Ariel Kpedetin Sodedji & Hospice Gérard Gracias Avakoudjo & Souand Peace Gloria Tahi & Achille Ep, 2023. "A Survey on Digital Agriculture in Five West African Countries," Agriculture, MDPI, vol. 13(5), pages 1-15, May.
    16. Söder, Mareike, 2014. "EU biofuel policies in practice: A carbon map for the Brazilian Cerrado," Kiel Working Papers 1966, Kiel Institute for the World Economy (IfW Kiel).
    17. Kingsley JOHN & Isong Abraham Isong & Ndiye Michael Kebonye & Esther Okon Ayito & Prince Chapman Agyeman & Sunday Marcus Afu, 2020. "Using Machine Learning Algorithms to Estimate Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil," Land, MDPI, vol. 9(12), pages 1-20, December.
    18. Yanfeng Wang & Ping Huang, 2022. "Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    20. Guilló, María Dolores & Magalhaes, Manuela, 2018. "Long-run Sustainability in the Green Solow Model," QM&ET Working Papers 18-2, University of Alicante, D. Quantitative Methods and Economic Theory.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:7:y:2018:i:4:p:124-:d:177195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.