IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i14p8703-d864802.html
   My bibliography  Save this article

Multi-Scenario Simulation of Land Use and Habitat Quality in the Guanzhong Plain Urban Agglomeration, China

Author

Listed:
  • Hao Ye

    (School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China)

  • Yongyong Song

    (School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China)

  • Dongqian Xue

    (School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China)

Abstract

Regional habitat quality is a proxy of biodiversity. Simulating changes in land use and habitat quality in urban agglomerations is the scientific basis for promoting the optimal allocation of land resources and building ecological civilizations in urban agglomerations. Therefore, we established a research framework mainly consisting of the Future Land Use Simulation (FLUS) model with the Integrated Valuation of Environmental Services and Tradeoffs (InVEST) model to predict the spatial and temporal distribution of habitat quality. In addition, we set three scenarios which were a natural development scenario, a cultivated land protection scenario, and an ecological protection scenario to analyze the changes of habitat quality in the Guanzhong Plain urban agglomeration in 2035. The results showed that: (1) the FLUS model had an excellent effect on the simulation of land-use change in the Guanzhong Plain urban agglomeration, with an overall accuracy of 0.952 and a kappa coefficient of 0.924. (2) From 2000 to 2035, the cultivated land area of the study area, which was mainly transferred into construction land and grassland, shrank due to the process of urbanization. (3) The habitat quality score of this region gradually decreased from 2000 to 2020, and it continued to decrease to 0.6921 in 2035 under the natural development scenario, while it increased under the other two scenarios. The low-value areas of habitat quality were mainly located in the middle of this region with Xi’an as the core, whereas the high-value areas were mainly distributed in the southern Qinling Mountains and the northern Loess Plateau. (4) Of the different scenarios, the ecological protection scenario had the highest habitat quality, while the natural development scenario had the lowest. Besides this, we also found that the cultivated protection scenario had high habitat quality, which was mainly because the rate of occupation of ecological land was controlled. The results are expected to provide a scientific basis for optimizing the spatial allocation of land resources and promoting the sustainable use of land space in other ecologically fragile urban agglomerations.

Suggested Citation

  • Hao Ye & Yongyong Song & Dongqian Xue, 2022. "Multi-Scenario Simulation of Land Use and Habitat Quality in the Guanzhong Plain Urban Agglomeration, China," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:14:p:8703-:d:864802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/14/8703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/14/8703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Billionnet, Alain, 2013. "Mathematical optimization ideas for biodiversity conservation," European Journal of Operational Research, Elsevier, vol. 231(3), pages 514-534.
    2. Xin Fan & Xinchen Gu & Haoran Yu & Aihua Long & Damien Sinonmatohou Tiando & Shengya Ou & Jiangfeng Li & Yuejing Rong & Guiling Tang & Yanjun Zheng & Mingjie Shi & Mengwen Wang & Xiong Wang & Chunbo H, 2021. "The Spatial and Temporal Evolution and Drivers of Habitat Quality in the Hung River Valley," Land, MDPI, vol. 10(12), pages 1-20, December.
    3. Qinglong Ding & Yang Chen & Lingtong Bu & Yanmei Ye, 2021. "Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model," IJERPH, MDPI, vol. 18(5), pages 1-19, March.
    4. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    5. Xueping Su & Yong Zhou & Qing Li, 2021. "Designing Ecological Security Patterns Based on the Framework of Ecological Quality and Ecological Sensitivity: A Case Study of Jianghan Plain, China," IJERPH, MDPI, vol. 18(16), pages 1-32, August.
    6. Mingruo Chu & Jiayi Lu & Dongqi Sun, 2022. "Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration," Land, MDPI, vol. 11(2), pages 1-19, February.
    7. Kelli L. Larson & Dave D. White & Patricia Gober & Amber Wutich, 2015. "Decision-Making under Uncertainty for Water Sustainability and Urban Climate Change Adaptation," Sustainability, MDPI, vol. 7(11), pages 1-24, November.
    8. Hamza K. Kija & Joseph O. Ogutu & Lazaro J. Mangewa & John Bukombe & Francesca Verones & Bente J. Graae & Jafari R. Kideghesho & Mohammed Y. Said & Emmanuel F. Nzunda, 2020. "Spatio-Temporal Changes in Wildlife Habitat Quality in the Greater Serengeti Ecosystem," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    9. Tim Newbold & Lawrence N. Hudson & Samantha L. L. Hill & Sara Contu & Igor Lysenko & Rebecca A. Senior & Luca Börger & Dominic J. Bennett & Argyrios Choimes & Ben Collen & Julie Day & Adriana De Palma, 2015. "Global effects of land use on local terrestrial biodiversity," Nature, Nature, vol. 520(7545), pages 45-50, April.
    10. Shuangshuang Liu & Qipeng Liao & Mingzhu Xiao & Dengyue Zhao & Chunbo Huang, 2022. "Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    11. A. Baccini & S. J. Goetz & W. S. Walker & N. T. Laporte & M. Sun & D. Sulla-Menashe & J. Hackler & P. S. A. Beck & R. Dubayah & M. A. Friedl & S. Samanta & R. A. Houghton, 2012. "Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps," Nature Climate Change, Nature, vol. 2(3), pages 182-185, March.
    12. Xu Zhang & Chunjuan Lyu & Xiang Fan & Rutian Bi & Lu Xia & Caicai Xu & Bo Sun & Tao Li & Chenggang Jiang, 2022. "Spatiotemporal Variation and Influence Factors of Habitat Quality in Loess Hilly and Gully Area of Yellow River Basin: A Case Study of Liulin County, China," Land, MDPI, vol. 11(1), pages 1-17, January.
    13. Xue Zhang & Lingyun Liao & Zhengduo Xu & Jiayu Zhang & Mengwei Chi & Siren Lan & Qiaochun Gan, 2022. "Interactive Effects on Habitat Quality Using InVEST and GeoDetector Models in Wenzhou, China," Land, MDPI, vol. 11(5), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Zhao & Mengwei Su & Xueyan Wang & Xiaoqing Li & Xinhan Chang & Pengtao Zhang, 2023. "Spatial–Temporal Evolution and Prediction of Habitat Quality in Beijing–Tianjin–Hebei Region Based on Land Use Change," Land, MDPI, vol. 12(3), pages 1-16, March.
    2. Tianyue Ma & Jing Li & Shuang Bai & Fangzhe Chang & Zhai Jiang & Xingguang Yan & Jiahao Shao, 2022. "Optimization and Construction of Ecological Security Patterns Based on Natural and Cultivated Land Disturbance," Sustainability, MDPI, vol. 14(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanwen Zhang & Yanqing Lang, 2022. "Quantifying and Analyzing the Responses of Habitat Quality to Land Use Change in Guangdong Province, China over the Past 40 Years," Land, MDPI, vol. 11(6), pages 1-23, May.
    2. Jinxin Sun & Mei Han & Fanbiao Kong & Fan Wei & Xianglun Kong, 2023. "Spatiotemporal Analysis of the Coupling Relationship between Habitat Quality and Urbanization in the Lower Yellow River," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    3. Sicheng Wang & Feng Lu & Guoen Wei, 2022. "Direct and Spillover Effects of Urban Land Expansion on Habitat Quality in Chengdu-Chongqing Urban Agglomeration," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    4. Wen Li & Jianwei Geng & Jingling Bao & Wenxiong Lin & Zeyan Wu & Shuisheng Fan, 2023. "Spatial and Temporal Evolution Patterns of Habitat Quality under Tea Plantation Expansion and Multi-Scenario Simulation Study: Anxi County as an Example," Land, MDPI, vol. 12(7), pages 1-19, June.
    5. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    6. Huiqing Han & Zhihua Su & Guangbin Yang, 2023. "Variations of Habitat Quality and Ecological Risk and Their Correlations with Landscape Metrics in a Robust Human Disturbed Coastal Region—Case Study: Xinggang Town in Southern China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    7. He Huang & Yanzhi Xiao & Guochang Ding & Lingyun Liao & Chen Yan & Qunyue Liu & Yaling Gao & Xiangcai Xie, 2023. "Comprehensive Evaluation of Island Habitat Quality Based on the Invest Model and Terrain Diversity: A Case Study of Haitan Island, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    8. Chunhua Peng & Yanhui Wang & Junwu Dong & Chong Huang, 2023. "Impact of Land Use Change on the Habitat Quality Evolution in Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    9. Taquan Ma & Rui Liu & Zheng Li & Tongtu Ma, 2023. "Research on the Evolution Characteristics and Dynamic Simulation of Habitat Quality in the Southwest Mountainous Urban Agglomeration from 1990 to 2030," Land, MDPI, vol. 12(8), pages 1-23, July.
    10. Guoyi Cui & Yan Zhang & Feihang Shi & Wenxia Jia & Bohua Pan & Changkun Han & Zhengze Liu & Min Li & Haohao Zhou, 2022. "Study of Spatiotemporal Changes and Driving Factors of Habitat Quality: A Case Study of the Agro-Pastoral Ecotone in Northern Shaanxi, China," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    11. Xiang Li & Zhaoshun Liu & Shujie Li & Yingxue Li, 2022. "Multi-Scenario Simulation Analysis of Land Use Impacts on Habitat Quality in Tianjin Based on the PLUS Model Coupled with the InVEST Model," Sustainability, MDPI, vol. 14(11), pages 1-18, June.
    12. Yuxin Qi & Yuandong Hu, 2024. "Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China," Land, MDPI, vol. 13(1), pages 1-21, January.
    13. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    14. Jiao, Hong-Wei & Liu, San-Yang, 2015. "A practicable branch and bound algorithm for sum of linear ratios problem," European Journal of Operational Research, Elsevier, vol. 243(3), pages 723-730.
    15. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    16. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    17. Mohamed Fomba & Zinash Delebo Osunde & Souleymane Sidi Traoré & Appollonia Okhimamhe & Janina Kleemann & Christine Fürst, 2024. "Urban Green Spaces in Bamako and Sikasso, Mali: Land Use Changes and Perceptions," Land, MDPI, vol. 13(1), pages 1-20, January.
    18. Baldini, Carolina & Marasas, Mariana Edith & Tittonell, Pablo & Drozd, Andrea Alejandra, 2022. "Urban, periurban and horticultural landscapes – Conflict and sustainable planning in La Plata district, Argentina," Land Use Policy, Elsevier, vol. 117(C).
    19. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    20. Salgado-Rojas, José & Álvarez-Miranda, Eduardo & Hermoso, Virgilio & Garcia-Gonzalo, Jordi & Weintraub, Andrés, 2020. "A mixed integer programming approach for multi-action planning for threat management," Ecological Modelling, Elsevier, vol. 418(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:14:p:8703-:d:864802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.