IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i7p1355-d1688170.html
   My bibliography  Save this article

Spatiotemporal Patterns and Drivers of Urban Traffic Carbon Emissions in Shaanxi, China

Author

Listed:
  • Yongsheng Qian

    (School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Junwei Zeng

    (School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Wenqiang Hao

    (Operations Branch, Xi’an Rail Transit Group Company-Limited, Xi’an 710016, China)

  • Xu Wei

    (School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Minan Yang

    (School of Architecture and Urban Planning, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Zhen Zhang

    (Beijing Institute of Ecological Geology, Beijing 100120, China)

  • Haimeng Liu

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

Mitigating traffic-related carbon emissions is pivotal for achieving carbon peaking targets and advancing sustainable urban development. This study employs spatial autocorrelation and high-low clustering analyses to analyze the spatial correlation and clustering patterns of urban road traffic carbon emissions in Shaanxi Province. The spatiotemporal evolution and structural impacts of emissions are quantified through a systematic framework, while the GTWR (Geographically Weighted Temporal Regression) model uncovers the multidimensional and heterogeneous driving mechanisms underlying carbon emissions. Findings reveal that road traffic CO 2 emissions in Shaanxi exhibit an upward trajectory, with a temporal evolution marked by distinct phases: “stable growth—rapid increase—gradual decline”. Emission dynamics vary significantly across transport modes: private vehicles emerge as the primary emission source, taxi/motorcycle emissions remain relatively stable, and bus/electric vehicle emissions persist at low levels. Spatially, the province demonstrates a pronounced high-carbon spillover effect, with persistent high-value clusters concentrated in central Shaanxi and the northern region of Yan’an City, exhibiting spillover effects on adjacent urban areas. Notably, the spatial distribution of CO 2 emissions has evolved significantly: a relatively balanced pattern across cities in 2010 transitioned to a pronounced “M”-shaped gradient along the north–south axis by 2015, stabilizing by 2020. The central urban cluster (Yan’an, Tongchuan, Xianyang, Baoji) initially formed a secondary low-carbon core, which later integrated into the regional emission gradient. By focusing on the micro-level dynamics of urban road traffic and its internal structural complexities—while incorporating built environment factors such as network layout, travel behavior, and infrastructure endowments—this study contributes novel insights to the transportation carbon emission literature, offering a robust framework for regional emission mitigation strategies.

Suggested Citation

  • Yongsheng Qian & Junwei Zeng & Wenqiang Hao & Xu Wei & Minan Yang & Zhen Zhang & Haimeng Liu, 2025. "Spatiotemporal Patterns and Drivers of Urban Traffic Carbon Emissions in Shaanxi, China," Land, MDPI, vol. 14(7), pages 1-21, June.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1355-:d:1688170
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/7/1355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/7/1355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minarta, Ria Roida & Ko, Joonho, 2024. "What are the stimulants on transportation carbon dioxide emissions?: A nation-level analysis," Energy, Elsevier, vol. 296(C).
    2. Azad Haider, 2024. "The Determinants of Greenhouse Gas Emissions: Empirical Evidence from Canadian Provinces," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
    3. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    4. Shaoqi Sun & Yuanli Xie & Yunmei Li & Kansheng Yuan & Lifa Hu, 2022. "Analysis of Dynamic Evolution and Spatial-Temporal Heterogeneity of Carbon Emissions at County Level along “The Belt and Road”—A Case Study of Northwest China," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
    5. Lina Ke & Zhiyu Ren & Quanming Wang & Lei Wang & Qingli Jiang & Yao Lu & Yu Zhao & Qin Tan, 2025. "Transport Carbon Emission Measurement Models and Spatial Patterns Under the Perspective of Land–Sea Integration–Take Tianjin as an Example," Sustainability, MDPI, vol. 17(7), pages 1-19, March.
    6. Xueyuan Li & Chun Zhang & Tianlu Pan & Xuecai Dong, 2025. "The Impact of Urban Form on Carbon Emission Efficiency Under Public Transit-Oriented Development: Spatial Heterogeneity and Driving Forces," Land, MDPI, vol. 14(6), pages 1-26, May.
    7. Hong, Jong Ho & Kim, Jitae & Son, Wonik & Shin, Heeyoung & Kim, Nahyun & Lee, Woong Ki & Kim, Jintae, 2019. "Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system," Energy Policy, Elsevier, vol. 127(C), pages 425-437.
    8. Han Jia & Weidong Li & Runlin Tian, 2025. "Spatio-Temporal Influencing Factors of the Coupling Coordination Degree Between China’s New-Type Urbanization and Transportation Carbon Emission Efficiency," Land, MDPI, vol. 14(3), pages 1-33, March.
    9. Bo-yang Gao & Zhi-ji Huang & Ting-ting Zhang & Xiao-yu Sun & Ming-yue Song, 2022. "Exploring the Impact of Industrial Land Price Distortion on Carbon Emission Intensity: Evidence from China," Land, MDPI, vol. 12(1), pages 1-20, December.
    10. Kangjuan Lv & Qiming Wang & Xunpeng Shi & Li Huang & Yatian Liu, 2025. "Multi-Scale Mapping of Energy Consumption Carbon Emission Spatiotemporal Characteristics: A Case Study of the Yangtze River Delta Region," Land, MDPI, vol. 14(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    2. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    3. Ju-Hee Kim & Young-Kuk Kim & Seung-Hoon Yoo, 2023. "Does Proximity to a Power Plant Affect Housing Property Values of a City in South Korea? An Empirical Investigation," Energies, MDPI, vol. 16(4), pages 1-14, February.
    4. Yang, Sungwoong & Cho, Hyun Mi & Yun, Beom Yeol & Hong, Taehoon & Kim, Sumin, 2021. "Energy usage and cost analysis of passive thermal retrofits for low-rise residential buildings in Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Zwickl-Bernhard, Sebastian & Neumann, Anne, 2024. "Modeling Europe’s role in the global LNG market 2040: Balancing decarbonization goals, energy security, and geopolitical tensions," Energy, Elsevier, vol. 301(C).
    6. Banglong Pan & Doudou Dong & Zhuo Diao & Qi Wang & Jiayi Li & Shaoru Feng & Juan Du & Jiulin Li & Gen Wu, 2024. "The Relationship Between Three-Dimensional Spatial Structure and CO 2 Emission of Urban Agglomerations Based on CNN-RF Modeling: A Case Study in East China," Sustainability, MDPI, vol. 16(17), pages 1-16, September.
    7. Kaize Zhang & Juqin Shen & Ran He & Bihang Fan & Han Han, 2019. "Dynamic Analysis of the Coupling Coordination Relationship between Urbanization and Water Resource Security and Its Obstacle Factor," IJERPH, MDPI, vol. 16(23), pages 1-16, November.
    8. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Lin, Boqiang & Ma, Ruiyang, 2022. "Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    10. Inseok Seo & Youhyun Lee, 2024. "Identifying typologies of synthetic energy justice: Eco-centric and anthropocentric perspectives," Energy & Environment, , vol. 35(6), pages 3297-3315, September.
    11. Xiangyi Lu & Jianzhong Xiao & Xiaolin Wang & Le Wen & Jiachao Peng, 2025. "Government regulation and China's natural gas price distortion: A sectoral perspective," Natural Resources Forum, Blackwell Publishing, vol. 49(1), pages 725-747, February.
    12. Thellufsen, Jakob Zinck & Lund, Henrik & Mathiesen, Brian Vad & Østergaard, Poul Alberg & Sorknæs, Peter & Nielsen, Steffen & Madsen, Poul Thøis & Andresen, Gorm Bruun, 2024. "Cost and system effects of nuclear power in carbon-neutral energy systems," Applied Energy, Elsevier, vol. 371(C).
    13. Lv, Zhuoran & Guo, Huadong & Zhang, Lu & Liang, Dong & Zhu, Qi & Liu, Xuting & Zhou, Heng & Liu, Yiming & Gou, Yiting & Dou, Xinyu & Chen, Guoqiang, 2024. "Urban public lighting classification method and analysis of energy and environmental effects based on SDGSAT-1 glimmer imager data," Applied Energy, Elsevier, vol. 355(C).
    14. Zheng, Sen & Zhang, Jie & Jian, Lirong, 2024. "Green technology diffusion mechanism in China's aviation industry cluster based on complex network game model," Energy, Elsevier, vol. 313(C).
    15. Rivero-Iglesias, Jose M. & Puente, Javier & Fernandez, Isabel & León, Omar, 2023. "Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain," Renewable Energy, Elsevier, vol. 211(C), pages 563-581.
    16. Zhang, Junjie & Jia, Rongwen & Yang, Hangjun & Dong, Kangyin, 2022. "Does electric vehicle promotion in the public sector contribute to urban transport carbon emissions reduction?," Transport Policy, Elsevier, vol. 125(C), pages 151-163.
    17. Liu, Yiming & Hao, Yu & Gao, Yixuan, 2017. "The environmental consequences of domestic and foreign investment: Evidence from China," Energy Policy, Elsevier, vol. 108(C), pages 271-280.
    18. Ding, Dan & Liu, Xiaoping & Xu, Xiaocong, 2024. "Projecting the future fine-resolution carbon dioxide emissions under the shared socioeconomic pathways for carbon peak evaluation," Applied Energy, Elsevier, vol. 365(C).
    19. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
    20. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Faaij, André, 2025. "Regionalized decision-supporting tool application for scenario analyses considering stakeholder interactions: A case study of the Groningen province in the northern Netherlands," Applied Energy, Elsevier, vol. 377(PD).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1355-:d:1688170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.