IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i3p341-d1353013.html
   My bibliography  Save this article

Green Transition Assessment, Spatial Correlation, and Obstacles Identification: Evidence from Urban Governance Data of 288 Cities in China

Author

Listed:
  • Ziao Yu

    (School of Economics, Lanzhou University, Lanzhou 730000, China
    These authors contributed equally to this work.)

  • Tianjiao Guo

    (School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    These authors contributed equally to this work.)

  • Xiaoqian Song

    (School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai 200030, China
    China Institute of Urban Governance, Shanghai Jiao Tong University, Shanghai 200030, China)

  • Lifan Zhang

    (School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Linmei Cai

    (School of Economics and Management, Yan’an University, Yan’an 716000, China)

  • Xi Zhang

    (School of Business, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Aiwen Zhao

    (College of Finance, Xuzhou University of Technology, Xuzhou 221018, China)

Abstract

The green transition of China’s cities is crucial for ecology civilization realization. Based on the driver–pressure–state–impact–response (DPSIR) framework, an integrated technique for order preference by similarity to ideal solution (TOPSIS) model with entropy weight, this study achieved the comprehensive assessment of the green transition of 288 province-level municipalities and prefecture-level cities in China over 18 years from 2002 to 2019, in addition to the spatial correlations and obstacles analysis. The results indicate that major cities in China have a more significant green transition value, and the eastern region is developing fast, while the northeast region is relatively slow. There was heterogeneous spatial distribution for green transition, because of the disequilibrium sustainable development of 288 cities. Green transition has a significantly positive spatial autocorrelation in the cities of China, the high–high significant clusters greatly increased, and the main locations changed from the northeast to southeast of China. Frequent obstacles were also found, including road infrastructure construction, water resources, and the green coverage of urban built-up areas. Based on these results, several policy implications were put forward, including the optimization of environmental laws and regulations, the development of green transportation infrastructure, resource conservation and the circular economy, the establishment of a green financial system, and increasing the linkage for the green transition of different cities.

Suggested Citation

  • Ziao Yu & Tianjiao Guo & Xiaoqian Song & Lifan Zhang & Linmei Cai & Xi Zhang & Aiwen Zhao, 2024. "Green Transition Assessment, Spatial Correlation, and Obstacles Identification: Evidence from Urban Governance Data of 288 Cities in China," Land, MDPI, vol. 13(3), pages 1-24, March.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:341-:d:1353013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/3/341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/3/341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maxim, Laura & Spangenberg, Joachim H. & O'Connor, Martin, 2009. "An analysis of risks for biodiversity under the DPSIR framework," Ecological Economics, Elsevier, vol. 69(1), pages 12-23, November.
    2. Kanokporn Swangjang & Phitwalan Kornpiphat, 2021. "Does ecotourism in a Mangrove area at Klong Kone, Thailand, conform to sustainable tourism? A case study using SWOT and DPSIR," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15960-15985, November.
    3. Bivand, Roger & Müller, Werner G. & Reder, Markus, 2009. "Power calculations for global and local Moran's," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2859-2872, June.
    4. Takatsuka, Hajime & Zeng, Dao-Zhi & Zhao, Laixun, 2015. "Resource-based cities and the Dutch disease," Resource and Energy Economics, Elsevier, vol. 40(C), pages 57-84.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changju Liu & Xiaowei Zhai & Keyu Ai, 2024. "Ecological Safety Assessment and Convergence of Resource-Based Cities in the Yellow River Basin," Sustainability, MDPI, vol. 16(7), pages 1-19, April.
    2. Mohammad Rashed Hasan Polas & Ratul Kumar Saha & Mosab I. Tabash, 2022. "How does tourist perception lead to tourist hesitation? Empirical evidence from Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3659-3686, March.
    3. Qing Luo & Daniel A. Griffith & Huayi Wu, 2019. "Spatial autocorrelation for massive spatial data: verification of efficiency and statistical power asymptotics," Journal of Geographical Systems, Springer, vol. 21(2), pages 237-269, June.
    4. Jack C. Yue & Ming-Huei Tu & Yin-Yee Leong, 2024. "A spatial analysis of the health and longevity of Taiwanese people," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 384-399, April.
    5. Li, Qiangyi & Zeng, Fu'e & Liu, Shaohui & Yang, Mian & Xu, Fei, 2021. "The effects of China's sustainable development policy for resource-based cities on local industrial transformation," Resources Policy, Elsevier, vol. 71(C).
    6. Herrera Gómez, Marcos & Cid, Juan Carlos & Paz, Jorge Augusto, 2012. "Introducción a la econometría espacial: Una aplicación al estudio de la fecundidad en la Argentina usando R [Introduction to Spatial Econometrics: An application to the study of fertility in Argent," MPRA Paper 41138, University Library of Munich, Germany.
    7. Yanguang Chen, 2013. "New Approaches for Calculating Moran’s Index of Spatial Autocorrelation," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-14, July.
    8. González-Val, Rafael & Pueyo, Fernando, 2019. "Natural resources, economic growth and geography," Economic Modelling, Elsevier, vol. 83(C), pages 150-159.
    9. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    10. Wesselink, Anna & Paavola, Jouni, 2008. "WP1: Analysing multilevel water and biodiversity governance in their context. Report," UFZ Discussion Papers 5/2008, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    11. Arif Wismadi & Mark Zuidgeest & Mark Brussel & Martin Maarseveen, 2014. "Spatial Preference Modelling for equitable infrastructure provision: an application of Sen’s Capability Approach," Journal of Geographical Systems, Springer, vol. 16(1), pages 19-48, January.
    12. Lhermie, Guillaume & Wernli, Didier & Jørgensen, Peter Søgaard & Kenkel, Donald & Lin Lawell, C.-Y. Cynthia & Tauer, Loren William & Gröhn, Yrjo Tapio, 2019. "Tradeoffs between resistance to antimicrobials in public health and their use in agriculture: Moving towards sustainability assessment," Ecological Economics, Elsevier, vol. 166(C), pages 1-1.
    13. Xuefeng Hou & Dianfeng Zhang & Liyuan Fu & Fu Zeng & Qing Wang, 2023. "Spatio-Temporal Evolution and Influencing Factors of Coupling Coordination Degree between Urban–Rural Integration and Digital Economy," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
    14. Rosse Marie Esparza-Huamanchumo & Yefferson Llonto Caicedo & Carla Ethel Gamarra Flores & Pablo Cesar Romo Román & Benoit Mougenot, 2024. "Perceptions of stakeholders and challenges faced by ecotourism management in a natural protected area in Peru," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20757-20780, August.
    15. Wenting Wang & Lijun Zhang & Jun Zhao & Mengge Qi & Fengrui Chen, 2020. "The Effect of Socioeconomic Factors on Spatiotemporal Patterns of PM 2.5 Concentration in Beijing–Tianjin–Hebei Region and Surrounding Areas," IJERPH, MDPI, vol. 17(9), pages 1-16, April.
    16. Maxim, Laura & Spangenberg, Joachim H., 2009. "Driving forces of chemical risks for the European biodiversity," Ecological Economics, Elsevier, vol. 69(1), pages 43-54, November.
    17. Cordier, Mateo & Pérez Agúndez, José A. & O'Connor, Martin & Rochette, Sébastien & Hecq, Walter, 2011. "Quantification of interdependencies between economic systems and ecosystem services: An input-output model applied to the Seine estuary," Ecological Economics, Elsevier, vol. 70(9), pages 1660-1671, July.
    18. repec:ags:aaea22:335717 is not listed on IDEAS
    19. Wenyan Pan & Muhammad Awais Gulzar & Waseem Hassan, 2020. "Synthetic Evaluation of China’s Regional Low-Carbon Economy Challenges by Driver-Pressure-State-Impact-Response Model," IJERPH, MDPI, vol. 17(15), pages 1-24, July.
    20. LeSage, James & Banerjee, Sudipto & Fischer, Manfred M. & Congdon, Peter, 2009. "Spatial statistics: Methods, models & computation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2781-2785, June.
    21. Rodríguez-Labajos, Beatriz & Binimelis, Rosa & Monterroso, Iliana, 2009. "Multi-level driving forces of biological invasions," Ecological Economics, Elsevier, vol. 69(1), pages 63-75, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:341-:d:1353013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.