IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p1062-d1146058.html
   My bibliography  Save this article

China’s Urban and Rural Development Significantly Affects the Pattern of Human Appropriation of Net Primary Production

Author

Listed:
  • Tian Zhang

    (Northwest Land and Resource Research Center, Shaanxi Normal University, Xi’an 710119, China)

  • Jian Peng

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Xiaoshu Cao

    (Northwest Land and Resource Research Center, Shaanxi Normal University, Xi’an 710119, China)

Abstract

Increasing human activities have greatly influenced the ecosystem and the use of ecological resources, and the unbalanced urban–rural development in China (urban and rural areas being two major bases of human activities) has always been accompanied by heterogeneous ecological effects. Human appropriation of net primary production (HANPP) is an integrated indicator quantifying the human domination of productivity and harvest in the biosphere. Identifying the unbalanced constraints of urban and rural development on HANPP has become necessary for improving human–land relationships. This study analyzed the spatial distribution and regional differentiations of the HANPP in China in 2015 and investigated how HANPP and its components responded to unbalanced regional urban–rural development. The results show that the total amount of HANPP was 2.68 PgC and gradually decreased from the southeast to the northwest of China in 2015, representing 60.33% of the NPP pot . In addition, HANPP luc , harvest through cropland, livestock grazing, and forestry contributed 60.70%, 29.86%, 8.53%, and 0.91%, respectively, to the total HANPP, with HANPP luc playing the dominant role in 21 provinces. There was a significant differentiation ( p < 0.05) in the spatial distribution of HANPP (gC/m 2 ), HANPP harv (gC/m 2 ), and HANPP luc (gC/m 2 ), especially between the Huanyong Hu Line and the western–eastern part of China, fundamentally resulting from uneven regional development. In addition, biomass production–consumption decoupling existed in most regions in China, 17 provinces were identified as consumption type, and a universal positive correlation ( p < 0.05) was identified between the production–consumption ratio of occupied biomass and HANPP harv (%HANPP). Different drive mechanisms were found between urban–rural development and HANPP, and each HANPP index was more likely to be affected by urban economy (UE), rural population (RP), and rural agricultural technology (RA) in China. The higher regional average nighttime light intensity, the proportion of the built-up area, and the urban road area corresponded with a large HANPP luc value. Conversely, HANPP would decrease as the proportion of urban green spaces increased. Furthermore, HANPP (%NPP pot ) and HANPP (gC/m 2 ) mostly depended on the rural development index, while HANPP luc and HANPP harv were mainly controlled by urban and rural development, respectively. Our findings help understand, first, how unbalanced regional development influences human-induced biomass occupation, the comprehensive urban ecological construction, and rural ecological restoration and, second, that the overall planning of urban–rural integration development must be strengthened to face greater ecological pressures in the future.

Suggested Citation

  • Tian Zhang & Jian Peng & Xiaoshu Cao, 2023. "China’s Urban and Rural Development Significantly Affects the Pattern of Human Appropriation of Net Primary Production," Land, MDPI, vol. 12(5), pages 1-21, May.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1062-:d:1146058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/1062/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/1062/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scarlett Epstein, T. & Jezeph, David, 2001. "Development--There is Another Way: A Rural-Urban Partnership Development Paradigm," World Development, Elsevier, vol. 29(8), pages 1443-1454, August.
    2. Jiang, Changjun & Li, Jintao & Liu, Jilai, 2022. "Does urbanization affect the gap between urban and rural areas? Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    3. Xiaotao Huang & Yongsheng Yang & Chunbo Chen & Hongfei Zhao & Buqing Yao & Zhen Ma & Li Ma & Huakun Zhou, 2022. "Quantifying and Mapping Human Appropriation of Net Primary Productivity in Qinghai Grasslands in China," Agriculture, MDPI, vol. 12(4), pages 1-13, March.
    4. Kastner, Thomas, 2009. "Trajectories in human domination of ecosystems: Human appropriation of net primary production in the Philippines during the 20th century," Ecological Economics, Elsevier, vol. 69(2), pages 260-269, December.
    5. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. C. Brannon Andersen & R. Kyle Donovan & John E. Quinn, 2015. "Human Appropriation of Net Primary Production (HANPP) in an Agriculturally-Dominated Watershed, Southeastern USA," Land, MDPI, vol. 4(2), pages 1-28, June.
    7. Marc L. Imhoff & Lahouari Bounoua & Taylor Ricketts & Colby Loucks & Robert Harriss & William T. Lawrence, 2004. "Global patterns in human consumption of net primary production," Nature, Nature, vol. 429(6994), pages 870-873, June.
    8. Roux, Nicolas & Kastner, Thomas & Erb, Karl-Heinz & Haberl, Helmut, 2021. "Does agricultural trade reduce pressure on land ecosystems? Decomposing drivers of the embodied human appropriation of net primary production," Ecological Economics, Elsevier, vol. 181(C).
    9. Fetzel, Tamara & Gradwohl, Markus & Erb, Karl-Heinz, 2014. "Conversion, intensification, and abandonment: A human appropriation of net primary production approach to analyze historic land-use dynamics in New Zealand 1860–2005," Ecological Economics, Elsevier, vol. 97(C), pages 201-208.
    10. Fangyi Zhang & Lijie Pu & Qing Huang, 2015. "Quantitative Assessment of the Human Appropriation of Net Primary Production (HANPP) in the Coastal Areas of Jiangsu, China," Sustainability, MDPI, vol. 7(12), pages 1-14, November.
    11. Chen, Aifang & Li, Ruiyun & Wang, Honglin & He, Bin, 2015. "Quantitative assessment of human appropriation of aboveground net primary production in China," Ecological Modelling, Elsevier, vol. 312(C), pages 54-60.
    12. Yiguo Chen & Peng Luo & Tsangyao Chang, 2020. "Urbanization and the Urban–Rural Income Gap in China: A Continuous Wavelet Coherency Analysis," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Lin & Yanbin Qi, 2023. "Influence of Consumption Decisions of Rural Residents in the Context of Rapid Urbanization: Evidence from Sichuan, China," Sustainability, MDPI, vol. 15(23), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Huang & Fangyi Zhang & Qian Zhang & Hui Ou & Yunxiang Jin, 2020. "Quantitative Assessment of the Impact of Human Activities on Terrestrial Net Primary Productivity in the Yangtze River Delta," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    2. Fangyi Zhang & Lijie Pu & Qing Huang, 2015. "Quantitative Assessment of the Human Appropriation of Net Primary Production (HANPP) in the Coastal Areas of Jiangsu, China," Sustainability, MDPI, vol. 7(12), pages 1-14, November.
    3. Zhang, Yanjie & Pan, Ying & Li, Meng & Wang, Zhipeng & Wu, Junxi & Zhang, Xianzhou & Cao, Yanan, 2021. "Impacts of human appropriation of net primary production on ecosystem regulating services in Tibet," Ecosystem Services, Elsevier, vol. 47(C).
    4. Pritchard, Rose & Ryan, Casey M. & Grundy, Isla & van der Horst, Dan, 2018. "Human Appropriation of Net Primary Productivity and Rural Livelihoods: Findings From Six Villages in Zimbabwe," Ecological Economics, Elsevier, vol. 146(C), pages 115-124.
    5. Xiaotao Huang & Yongsheng Yang & Chunbo Chen & Hongfei Zhao & Buqing Yao & Zhen Ma & Li Ma & Huakun Zhou, 2022. "Quantifying and Mapping Human Appropriation of Net Primary Productivity in Qinghai Grasslands in China," Agriculture, MDPI, vol. 12(4), pages 1-13, March.
    6. Chen, Aifang & Li, Ruiyun & Wang, Honglin & He, Bin, 2015. "Quantitative assessment of human appropriation of aboveground net primary production in China," Ecological Modelling, Elsevier, vol. 312(C), pages 54-60.
    7. Tan Chen & Qiuhao Huang & Miao Liu & Manchun Li & Le’an Qu & Shulin Deng & Dong Chen, 2017. "Decreasing Net Primary Productivity in Response to Urbanization in Liaoning Province, China," Sustainability, MDPI, vol. 9(2), pages 1-17, January.
    8. C. Brannon Andersen & R. Kyle Donovan & John E. Quinn, 2015. "Human Appropriation of Net Primary Production (HANPP) in an Agriculturally-Dominated Watershed, Southeastern USA," Land, MDPI, vol. 4(2), pages 1-28, June.
    9. Krausmann, Fridolin & Gingrich, Simone & Haberl, Helmut & Erb, Karl-Heinz & Musel, Annabella & Kastner, Thomas & Kohlheb, Norbert & Niedertscheider, Maria & Schwarzlmüller, Elmar, 2012. "Long-term trajectories of the human appropriation of net primary production: Lessons from six national case studies," Ecological Economics, Elsevier, vol. 77(C), pages 129-138.
    10. Mayer, Andreas & Kaufmann, Lisa & Kalt, Gerald & Matej, Sarah & Theurl, Michaela C. & Morais, Tiago G. & Leip, Adrian & Erb, Karl-Heinz, 2021. "Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union," Ecosystem Services, Elsevier, vol. 51(C).
    11. Erb, Karl-Heinz & Krausmann, Fridolin & Gaube, Veronika & Gingrich, Simone & Bondeau, Alberte & Fischer-Kowalski, Marina & Haberl, Helmut, 2009. "Analyzing the global human appropriation of net primary production -- processes, trajectories, implications. An introduction," Ecological Economics, Elsevier, vol. 69(2), pages 250-259, December.
    12. Chiqun Hu & Xiaoyu Ma & Yangqing Liu & Jiexiao Ge & Xiaohui Zhang & Qiangyi Li, 2023. "Mechanism and Spatial Spillover Effect of New-Type Urbanization on Urban CO 2 Emissions: Evidence from 250 Cities in China," Land, MDPI, vol. 12(5), pages 1-25, May.
    13. Lin, Boqiang & Zhou, Yicheng, 2021. "How does vertical fiscal imbalance affect the upgrading of industrial structure? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    14. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    15. Yuqi Zhu & Siwei Shen & Linyu Du & Jun Fu & Jian Zou & Lina Peng & Rui Ding, 2023. "Spatial and Temporal Interaction Coupling of Digital Economy, New-Type Urbanization and Land Ecology and Spatial Effects Identification: A Study of the Yangtze River Delta," Land, MDPI, vol. 12(3), pages 1-27, March.
    16. Wei Zhang & Jing Cheng & Xuemeng Liu & Zhangrong Zhu, 2023. "Heterogeneous industrial agglomeration, its coordinated development and total factor energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5511-5537, June.
    17. Martínez-Alier, Joan & Pascual, Unai & Vivien, Franck-Dominique & Zaccai, Edwin, 2010. "Sustainable de-growth: Mapping the context, criticisms and future prospects of an emergent paradigm," Ecological Economics, Elsevier, vol. 69(9), pages 1741-1747, July.
    18. Pengyang Zhang & Lewen Zhang & Dandan Han & Tingting Wang & He Zhu & Yongtao Chen, 2023. "Coupled and Coordinated Development of the Tourism Industry and Urbanization in Marginal and Less Developed Regions—Taking the Mountainous Border Areas of Western Yunnan as a Case Study," Land, MDPI, vol. 12(3), pages 1-24, March.
    19. Beatrice Asenso Barnieh & Li Jia & Massimo Menenti & Min Jiang & Jie Zhou & Yelong Zeng & Ali Bennour, 2021. "Modeling the Underlying Drivers of Natural Vegetation Occurrence in West Africa with Binary Logistic Regression Method," Sustainability, MDPI, vol. 13(9), pages 1-37, April.
    20. Jianxu Liu & Xiaoqing Li & Shutong Liu & Sanzidur Rahman & Songsak Sriboonchitta, 2022. "Addressing Rural–Urban Income Gap in China through Farmers’ Education and Agricultural Productivity Growth via Mediation and Interaction Effects," Agriculture, MDPI, vol. 12(11), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1062-:d:1146058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.