IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i7p1424-d1696468.html
   My bibliography  Save this article

Beyond Linearity: Uncovering the Complex Spatiotemporal Drivers of New-Type Urbanization and Eco-Environmental Resilience Coupling in China’s Chengdu–Chongqing Economic Circle with Machine Learning

Author

Listed:
  • Caoxin Chen

    (School of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu 611830, China)

  • Shiyi Wang

    (School of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu 611830, China)

  • Meixi Liu

    (School of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu 611830, China)

  • Ke Huang

    (School of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu 611830, China)

  • Qiuyi Guo

    (School of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu 611830, China)

  • Wei Xie

    (School of Economics and Business Administration, Yibin University, Yibin 644005, China)

  • Jiangjun Wan

    (School of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu 611830, China)

Abstract

Rapid urbanization worldwide has led to ecological challenges, undermining eco-environmental resilience (EER). Understanding the coupling coordination between new-type urbanization (NTU) and EER is critical for achieving sustainable urban development. This study investigates the Chengdu–Chongqing Economic Circle using the coupling coordination degree (CCD) model to evaluate NTU-EER coordination levels and their spatiotemporal evolution. A random forest (RF) model, interpreted with Shapley Additive exPlanations (SHAP) and Partial Dependence Plot (PDP) algorithms, explores nonlinear driving mechanisms, while Geographically and Temporally Weighted Regression (GTWR) assesses drivers’ spatiotemporal heterogeneity. The results reveal the following: (1) NTU and EER levels steadily improved from 2004 to 2022, although coordination between cities still requires enhancement; (2) CCD exhibited a temporal pattern of “progressive escalation and continuous optimization,” and a spatial pattern of “dual-core leadership and regional diffusion,” with most cities shifting from NTU-lagged to synchronized development; (3) environmental regulations (MAR) and fixed asset investment (FIX) emerged as the most influential CCD drivers, and significant nonlinear interactions were observed, particularly those involving population size (HUM); (4) CCD drivers exhibited complex spatiotemporal heterogeneity, characterized by “stage dominance—marginal variation—spatial mismatch.” These findings enrich existing research and offer policy insights to enhance coordinated development in the Chengdu–Chongqing Economic Circle.

Suggested Citation

  • Caoxin Chen & Shiyi Wang & Meixi Liu & Ke Huang & Qiuyi Guo & Wei Xie & Jiangjun Wan, 2025. "Beyond Linearity: Uncovering the Complex Spatiotemporal Drivers of New-Type Urbanization and Eco-Environmental Resilience Coupling in China’s Chengdu–Chongqing Economic Circle with Machine Learning," Land, MDPI, vol. 14(7), pages 1-29, July.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1424-:d:1696468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/7/1424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/7/1424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Jinhua & Dai, Sheng & Ye, Xinyue, 2016. "Spatiotemporal heterogeneity of industrial pollution in China," China Economic Review, Elsevier, vol. 40(C), pages 179-191.
    2. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Wang, Yun & Sun, Xiaohua & Guo, Xu, 2019. "Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors," Energy Policy, Elsevier, vol. 132(C), pages 611-619.
    4. Costanza, Robert & de Groot, Rudolf & Braat, Leon & Kubiszewski, Ida & Fioramonti, Lorenzo & Sutton, Paul & Farber, Steve & Grasso, Monica, 2017. "Twenty years of ecosystem services: How far have we come and how far do we still need to go?," Ecosystem Services, Elsevier, vol. 28(PA), pages 1-16.
    5. Cole, M.A. & Rayner, A.J. & Bates, J.M., 1997. "The environmental Kuznets curve: an empirical analysis," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 401-416, November.
    6. Zhang, Zimo & Peng, Jian & Xu, Zihan & Wang, Xiaoyu & Meersmans, Jeroen, 2021. "Ecosystem services supply and demand response to urbanization: A case study of the Pearl River Delta, China," Ecosystem Services, Elsevier, vol. 49(C).
    7. Wenbo Ma & Weiteng Tian & Qian Zhou & Qianqian Miao & Wei Zhang, 2021. "Analysis on the Temporal and Spatial Heterogeneity of Factors Affecting Urbanization Development Based on the GTWR Model: Evidence from the Yangtze River Economic Belt," Complexity, Hindawi, vol. 2021, pages 1-11, October.
    8. Kijima, Masaaki & Nishide, Katsumasa & Ohyama, Atsuyuki, 2010. "Economic models for the environmental Kuznets curve: A survey," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1187-1201, July.
    9. Sha, Anmeng & Zhang, Jianjun & Pan, Yujie & Zhang, Shouguo, 2025. "How to recognize and measure the impact of phasing urbanization on eco-environment quality: An empirical case study of 19 urban agglomerations in China," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
    10. Lyu, Rongfang & Zhang, Jianming & Xu, Mengqun & Li, Jijun, 2018. "Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China," Land Use Policy, Elsevier, vol. 77(C), pages 163-173.
    11. Yingyuan Guo & Xingneng Xia & Sheng Zhang & Danping Zhang, 2018. "Environmental Regulation, Government R&D Funding and Green Technology Innovation: Evidence from China Provincial Data," Sustainability, MDPI, vol. 10(4), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torres-Brito, David Israel & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2023. "Impacto de los contaminantes por gases de efecto invernadero en el crecimiento económico en 86 países (1990-2019): Sobre la curva inversa de Kuznets [Impact of the Effect of Greenhouse Gas Pollutan," MPRA Paper 119031, University Library of Munich, Germany.
    2. Stern, David I., 2014. "The Environmental Kuznets Curve: A Primer," Working Papers 249424, Australian National University, Centre for Climate Economics & Policy.
    3. Rodríguez, Miguel & Pena-Boquete, Yolanda & Pardo-Fernández, Juan Carlos, 2016. "Revisiting Environmental Kuznets Curves through the energy price lens," Energy Policy, Elsevier, vol. 95(C), pages 32-41.
    4. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    5. Xiaoping He & Xin Yao, 2017. "Foreign Direct Investments and the Environmental Kuznets Curve: New Evidence from Chinese Provinces," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 53(1), pages 12-25, January.
    6. Azam, Muhammad & Khan, Abdul Qayyum, 2016. "Testing the Environmental Kuznets Curve hypothesis: A comparative empirical study for low, lower middle, upper middle and high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 556-567.
    7. Vo, Long Hai & Le, Thai-Ha, 2021. "Eatery, energy, environment and economic system, 1970–2017: Understanding volatility spillover patterns in a global sample," Energy Economics, Elsevier, vol. 100(C).
    8. Emil Georgiev & Emil Mihaylov, 2015. "Economic growth and the environment: reassessing the environmental Kuznets Curve for air pollution emissions in OECD countries," Letters in Spatial and Resource Sciences, Springer, vol. 8(1), pages 29-47, March.
    9. Germani, Anna Rita & Morone, Piergiuseppe & Testa, Giuseppina, 2014. "Environmental justice and air pollution: A case study on Italian provinces," Ecological Economics, Elsevier, vol. 106(C), pages 69-82.
    10. Kubiszewski, Ida & Concollato, Luke & Costanza, Robert & Stern, David I., 2023. "Changes in authorship, networks, and research topics in ecosystem services," Ecosystem Services, Elsevier, vol. 59(C).
    11. Lindong Ma & Yuanxiao Hong & Xihui Chen & Xiaoyong Quan, 2022. "Can Green Innovation and New Urbanization Be Synergistic Development? Empirical Evidence from Yangtze River Delta City Group in China," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    12. Hanxiao Wei & Huiqin Yao, 2022. "Environmental Regulation, Roundabout Production, and Industrial Structure Transformation and Upgrading: Evidence from China," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    13. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    14. Wensheng Yu & Wei Yu, 2024. "Analysis of the Coupling Coordination between the Ecosystem Service Value and Urbanization in the Circum-Bohai-Sea Region and Its Obstacle Factors," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
    15. Sabrina Auci & Giovanni Trovato, 2018. "The environmental Kuznets curve within European countries and sectors: greenhouse emission, production function and technology," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 895-915, December.
    16. Auci, Sabrina & Vignani, Donatella, 2013. "Environmental Kuznets curve and domestic material consumption indicator: an European analysis," MPRA Paper 52882, University Library of Munich, Germany.
    17. Tianhai Zhang & Yaqin Qu & Yang Liu & Guanfeng Yan & Greg Foliente, 2022. "Spatiotemporal Response of Ecosystem Service Values to Land Use Change in Xiamen, China," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    18. Pham, Kien T. & Lin, Tang-Huang, 2023. "Effects of urbanisation on ecosystem service values: A case study of Nha Trang, Vietnam," Land Use Policy, Elsevier, vol. 128(C).
    19. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    20. WenShwo Fang & Stephen M. Miller, 2013. "The effect of ESCO s on carbon dioxide emissions," Applied Economics, Taylor & Francis Journals, vol. 45(34), pages 4796-4804, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1424-:d:1696468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.