IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1275-d883261.html
   My bibliography  Save this article

The Potential Impact of Climate Change on the Efficiency and Reliability of Solar, Hydro, and Wind Energy Sources

Author

Listed:
  • Uma S. Bhatt

    (Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA)

  • Benjamin A. Carreras

    (Department Fisica, Universidad Carlos III, Avenida de la Universidad, 30, 28911 Madrid, Spain
    IFISC, Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain)

  • José Miguel Reynolds Barredo

    (Department Fisica, Universidad Carlos III, Avenida de la Universidad, 30, 28911 Madrid, Spain)

  • David E. Newman

    (Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA)

  • Pere Collet

    (IFISC, Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain)

  • Damiá Gomila

    (IFISC, Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain)

Abstract

Climate change impacts the electric power system by affecting both the load and generation. It is paramount to understand this impact in the context of renewable energy as their market share has increased and will continue to grow. This study investigates the impact of climate change on the supply of renewable energy through applying novel metrics of intermittency, power production and storage required by the renewable energy plants as a function of historical climate data variability. Here we focus on and compare two disparate locations, Palma de Mallorca in the Balearic Islands and Cordova, Alaska. The main results of this analysis of wind, solar radiation and precipitation over the 1950–2020 period show that climate change impacts both the total supply available and its variability. Importantly, this impact is found to vary significantly with location. This analysis demonstrates the feasibility of a process to evaluate the local optimal mix of renewables, the changing needs for energy storage as well as the ability to evaluate the impact on grid reliability regarding both penetration of the increasing renewable resources and changes in the variability of the resource. This framework can be used to quantify the impact on both transmission grids and microgrids and can guide possible mitigation paths.

Suggested Citation

  • Uma S. Bhatt & Benjamin A. Carreras & José Miguel Reynolds Barredo & David E. Newman & Pere Collet & Damiá Gomila, 2022. "The Potential Impact of Climate Change on the Efficiency and Reliability of Solar, Hydro, and Wind Energy Sources," Land, MDPI, vol. 11(8), pages 1-18, August.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1275-:d:883261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(2), pages 119-125, February.
    2. Pes, Marcelo P. & Pereira, Enio B. & Marengo, Jose A. & Martins, Fernando R. & Heinemann, Detlev & Schmidt, Michael, 2017. "Climate trends on the extreme winds in Brazil," Renewable Energy, Elsevier, vol. 109(C), pages 110-120.
    3. Daniel L. Swain & Baird Langenbrunner & J. David Neelin & Alex Hall, 2018. "Increasing precipitation volatility in twenty-first-century California," Nature Climate Change, Nature, vol. 8(5), pages 427-433, May.
    4. Peter A. Stott & Nathan P. Gillett & Gabriele C. Hegerl & David J. Karoly & Dáithí A. Stone & Xuebin Zhang & Francis Zwiers, 2010. "Detection and attribution of climate change: a regional perspective," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 1(2), pages 192-211, March.
    5. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    6. Dalala, Zakariya & Al-Omari, Murad & Al-Addous, Mohammad & Bdour, Mathhar & Al-Khasawneh, Yaqoub & Alkasrawi, Malek, 2022. "Increased renewable energy penetration in national electrical grids constraints and solutions," Energy, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Na & Peng, Xiaoyue & Su, Chengguo & Wang, Guangyan & Sui, Quan, 2025. "Adaptive stochastic scheduling of cascade hydropower-photovoltaic power hybrid systems under climate change," Energy, Elsevier, vol. 319(C).
    2. Andrey M. Bramm & Stanislav A. Eroshenko & Alexandra I. Khalyasmaa & Pavel V. Matrenin, 2023. "Grey Wolf Optimizer for RES Capacity Factor Maximization at the Placement Planning Stage," Mathematics, MDPI, vol. 11(11), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waffenschmidt, Brigitte, 2021. "Nachhaltigkeit: Modewort oder Erwartung der Generation Y an ihre Arbeitgeber," EconStor Research Reports 246810, ZBW - Leibniz Information Centre for Economics.
    2. Zheng, Mingbo & Zhang, Xinyu, 2025. "Digitalization and renewable energy development: Analysis based on cross-country panel data," Energy, Elsevier, vol. 319(C).
    3. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    4. Kang, Kai & Su, Yifan & Yang, Peng & Wang, Zhaojian & Liu, Feng, 2025. "Securing long-term dispatch of isolated microgrids with high-penetration renewable generation: A controlled evolution-based framework," Applied Energy, Elsevier, vol. 381(C).
    5. Mastroeni, Loretta & Mazzoccoli, Alessandro & Vellucci, Pierluigi, 2024. "Wavelet entropy and complexity–entropy curves approach for energy commodity price predictability amid the transition to alternative energy sources," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    6. Kamiar Mohaddes & Ryan N C Ng & M Hashem Pesaran & Mehdi Raissi & Jui-Chung Yang, 2023. "Climate change and economic activity: evidence from US states," Oxford Open Economics, Oxford University Press, vol. 2, pages 28-46.
    7. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    8. Daniele Candelaresi & Giuseppe Spazzafumo, 2023. "Production of Substitute Natural Gas Integrated with Allam Cycle for Power Generation," Energies, MDPI, vol. 16(5), pages 1-17, February.
    9. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    10. Riccardo Fraboni & Gianluca Grazieschi & Simon Pezzutto & Benjamin Mitterrutzner & Eric Wilczynski, 2023. "Environmental Assessment of Residential Space Heating and Cooling Technologies in Europe: A Review of 11 European Member States," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    11. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    13. Cai, Qingyin & Çakır, Metin & Beatty, Timothy & Park, Timothy A., 2022. "Drought and the Specialty Crops Production in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322530, Agricultural and Applied Economics Association.
    14. Zhang, Yingnan & Wu, Guanqi & Zhang, Bin, 2025. "Costs and CO2 emissions of technological transformation in China's power industry: The impact of market regulation and assistive technologies," Structural Change and Economic Dynamics, Elsevier, vol. 73(C), pages 211-222.
    15. Truong, Chi & Trueck, Stefan & Pitt, David & Best, Rohan, 2025. "Seasonality and valuation of renewable energy projects in a two factor model," Applied Energy, Elsevier, vol. 389(C).
    16. Sarah E Diringer & Morgan Shimabuku & Heather Cooley, 2020. "Economic evaluation of stormwater capture and its multiple benefits in California," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-18, March.
    17. Cao, Yan & Cheng, Sheng & Li, Xinran, 2024. "Co-movements between heterogeneous crude oil and food markets: Does temperature change really matter?," Research in International Business and Finance, Elsevier, vol. 67(PB).
    18. Jerez, S. & Thais, F. & Tobin, I. & Wild, M. & Colette, A. & Yiou, P. & Vautard, R., 2015. "The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1-15.
    19. Huo, Dongxia & Bagadeem, Salim & Elsherazy, Tarek Abbas & Nasnodkar, Siddhesh Prabhu & Kalra, Akash, 2023. "Renewable energy consumption and the rising effect of climate policy uncertainty: Fresh policy analysis from China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1459-1474.
    20. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1275-:d:883261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.