IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4288-d1082832.html
   My bibliography  Save this article

Environmental Assessment of Residential Space Heating and Cooling Technologies in Europe: A Review of 11 European Member States

Author

Listed:
  • Riccardo Fraboni

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

  • Gianluca Grazieschi

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

  • Simon Pezzutto

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

  • Benjamin Mitterrutzner

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

  • Eric Wilczynski

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

Abstract

Greenhouse gas emissions have reached critical levels and climate change is threatening the globe. Thus, the space heating and cooling sector is striving to decarbonize assets through higher efficiency and renewable energy adoption for 2030 and 2050. This article reviewed data about the environmental impact and the primary energy consumption of 27 space heating and cooling technologies for the residential sector as if they were adopted in 11 different European member states: Austria, Cyprus, Denmark, Estonia, France, Germany, Italy, Poland, Romania, Spain, and Sweden. Direct emissions from the machineries and upstream indirect emissions from the energy carriers were considered. The analysis indicates that the adoption of renewable energy-powered technologies should be prioritized due to the significantly lower emissions related to these technologies. Notably, the emissions of electricity-powered technologies, if not driven by the direct self-consumption of renewable energy systems, highly depend on the region of adoption: in specific cases, such as in Poland, Cyprus, and Estonia, they can even exceed the emissions of coal-powered technologies. These countries should speed up the adoption of decarbonization policies regarding the residential sector to close the gap with the other EU member states and provide their contribution to the EU climate change goals.

Suggested Citation

  • Riccardo Fraboni & Gianluca Grazieschi & Simon Pezzutto & Benjamin Mitterrutzner & Eric Wilczynski, 2023. "Environmental Assessment of Residential Space Heating and Cooling Technologies in Europe: A Review of 11 European Member States," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4288-:d:1082832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4288/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naicker, Selvaraj S. & Rees, Simon J., 2018. "Performance analysis of a large geothermal heating and cooling system," Renewable Energy, Elsevier, vol. 122(C), pages 429-442.
    2. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    3. Mubarak Ismail & Metkel Yebiyo & Issa Chaer, 2021. "A Review of Recent Advances in Emerging Alternative Heating and Cooling Technologies," Energies, MDPI, vol. 14(2), pages 1-24, January.
    4. Dalala, Zakariya & Al-Omari, Murad & Al-Addous, Mohammad & Bdour, Mathhar & Al-Khasawneh, Yaqoub & Alkasrawi, Malek, 2022. "Increased renewable energy penetration in national electrical grids constraints and solutions," Energy, Elsevier, vol. 246(C).
    5. Neirotti, Francesco & Noussan, Michel & Simonetti, Marco, 2020. "Towards the electrification of buildings heating - Real heat pumps electricity mixes based on high resolution operational profiles," Energy, Elsevier, vol. 195(C).
    6. Asdrubali, F. & Baggio, P. & Prada, A. & Grazieschi, G. & Guattari, C., 2020. "Dynamic life cycle assessment modelling of a NZEB building," Energy, Elsevier, vol. 191(C).
    7. Broad, Oliver & Hawker, Graeme & Dodds, Paul E., 2020. "Decarbonising the UK residential sector: The dependence of national abatement on flexible and local views of the future," Energy Policy, Elsevier, vol. 140(C).
    8. Miroslaw Zukowski & Marta Kosior-Kazberuk & Tomasz Blaszczynski, 2021. "Energy and Environmental Performance of Solar Thermal Collectors and PV Panel System in Renovated Historical Building," Energies, MDPI, vol. 14(21), pages 1-15, November.
    9. Leibowicz, Benjamin D. & Lanham, Christopher M. & Brozynski, Max T. & Vázquez-Canteli, José R. & Castejón, Nicolás Castillo & Nagy, Zoltan, 2018. "Optimal decarbonization pathways for urban residential building energy services," Applied Energy, Elsevier, vol. 230(C), pages 1311-1325.
    10. Earle, Lieko & Maguire, Jeff & Munankarmi, Prateek & Roberts, David, 2023. "The impact of energy-efficiency upgrades and other distributed energy resources on a residential neighborhood-scale electrification retrofit," Applied Energy, Elsevier, vol. 329(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    2. Besagni, Giorgio & Borgarello, Marco & Premoli Vilà, Lidia & Najafi, Behzad & Rinaldi, Fabio, 2020. "MOIRAE – bottom-up MOdel to compute the energy consumption of the Italian REsidential sector: Model design, validation and evaluation of electrification pathways," Energy, Elsevier, vol. 211(C).
    3. Bruck, Axel & Díaz Ruano, Santiago & Auer, Hans, 2022. "One piece of the puzzle towards 100 Positive Energy Districts (PEDs) across Europe by 2025: An open-source approach to unveil favourable locations of PV-based PEDs from a techno-economic perspective," Energy, Elsevier, vol. 254(PA).
    4. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.
    5. Mitterrutzner, Benjamin & Callegher, Claudio Zandonella & Fraboni, Riccardo & Wilczynski, Eric & Pezzutto, Simon, 2023. "Review of heating and cooling technologies for buildings: A techno-economic case study of eleven European countries," Energy, Elsevier, vol. 284(C).
    6. Stephan Kigle & Michael Ebner & Andrej Guminski, 2022. "Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System," Energies, MDPI, vol. 15(4), pages 1-18, February.
    7. Michael O. Dioha & Nnaemeka Vincent Emodi, 2019. "Investigating the Impacts of Energy Access Scenarios in the Nigerian Household Sector by 2030," Resources, MDPI, vol. 8(3), pages 1-18, July.
    8. Pierluigi Morano & Francesco Tajani & Felicia Di Liddo & Debora Anelli, 2020. "A Feasibility Analysis of The Refurbishment Investments in The Italian Residential Market," Sustainability, MDPI, vol. 12(6), pages 1-20, March.
    9. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    10. Juan Pablo Fernández Goycoolea & Gabriela Zapata-Lancaster & Christopher Whitman, 2022. "Operational Emissions in Prosuming Dwellings: A Study Comparing Different Sources of Grid CO 2 Intensity Values in South Wales, UK," Energies, MDPI, vol. 15(7), pages 1-24, March.
    11. Daniele Candelaresi & Giuseppe Spazzafumo, 2023. "Production of Substitute Natural Gas Integrated with Allam Cycle for Power Generation," Energies, MDPI, vol. 16(5), pages 1-17, February.
    12. Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
    13. Stringer, Thomas & Joanis, Marcelin, 2022. "Assessing energy transition costs: Sub-national challenges in Canada," Energy Policy, Elsevier, vol. 164(C).
    14. Kaandorp, Chelsea & Miedema, Tes & Verhagen, Jeroen & van de Giesen, Nick & Abraham, Edo, 2022. "Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation," Applied Energy, Elsevier, vol. 325(C).
    15. Ma, Sining & Guo, Siyue & Zheng, Dingqian & Chang, Shiyan & Zhang, Xiliang, 2021. "Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China," Energy, Elsevier, vol. 225(C).
    16. Ahmet Feyzioglu, 2023. "A Study on the Control System of Electric Water Heaters for Decarbonization," Energies, MDPI, vol. 16(5), pages 1-12, March.
    17. Li, X. & Arbabi, H. & Bennett, G. & Oreszczyn, T. & Densley Tingley, D., 2022. "Net zero by 2050: Investigating carbon-budget compliant retrofit measures for the English housing stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
    19. Renata Pelc-Mieczkowska & Wioleta Błaszczak-Bąk & Joanna Janicka & Tomasz Kozakiewicz, 2024. "Forest Stand Growth Forecasting in the Context of Changes in the Insolation of Building Roofs," Energies, MDPI, vol. 17(3), pages 1-21, January.
    20. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4288-:d:1082832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.