IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v122y2018icp429-442.html

Performance analysis of a large geothermal heating and cooling system

Author

Listed:
  • Naicker, Selvaraj S.
  • Rees, Simon J.

Abstract

Ground Source Heat Pump systems can play an important role in reducing carbon emissions associated with building heating and cooling. The efficiencies and carbon emission savings achieved, partly depend on the optimization of the design, the control of the system and its reliability during extended operation. This paper reports the detailed investigation of the performance of a large system that includes fifty-six vertical borehole heat exchangers and four large heat pumps that provide both heating and cooling. High frequency data have been collected during the initial three years of operation that allow seasonal performance factors to be derived and detailed analysis of system operation. Annual performance has been found to be satisfactory overall but is highly variable depending on operating conditions and control system actions. A series of analyses have been carried out to investigate the roles of circulating pump energy, control system operation and dynamic behaviour. A series of recommendations concerned with better design for part-load operation, reduction in pump energy demands and more robust control systems, are made with a view to improved system design and operation. Data from the study are being made available for further work on performance analysis and model validation studies.

Suggested Citation

  • Naicker, Selvaraj S. & Rees, Simon J., 2018. "Performance analysis of a large geothermal heating and cooling system," Renewable Energy, Elsevier, vol. 122(C), pages 429-442.
  • Handle: RePEc:eee:renene:v:122:y:2018:i:c:p:429-442
    DOI: 10.1016/j.renene.2018.01.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118301095
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    2. Montagud, Carla & Corberán, José Miguel & Ruiz-Calvo, Félix, 2013. "Experimental and modeling analysis of a ground source heat pump system," Applied Energy, Elsevier, vol. 109(C), pages 328-336.
    3. Gao, Qing & Li, Ming & Yu, Ming & Spitler, Jeffrey D. & Yan, Y.Y., 2009. "Review of development from GSHP to UTES in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1383-1394, August.
    4. Simon Rees & Robin Curtis, 2014. "National Deployment of Domestic Geothermal Heat Pump Technology: Observations on the UK Experience 1995–2013," Energies, MDPI, vol. 7(8), pages 1-40, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Liu & Hongyi Zhang & Saqib Javed, 2020. "Long-Term Performance Measurement and Analysis of a Small-Scale Ground Source Heat Pump System," Energies, MDPI, vol. 13(17), pages 1-30, September.
    2. Oleg Todorov & Kari Alanne & Markku Virtanen & Risto Kosonen, 2021. "A Novel Data Management Methodology and Case Study for Monitoring and Performance Analysis of Large-Scale Ground Source Heat Pump (GSHP) and Borehole Thermal Energy Storage (BTES) System," Energies, MDPI, vol. 14(6), pages 1-25, March.
    3. Jeffrey D. Spitler & Signhild Gehlin, 2019. "Measured Performance of a Mixed-Use Commercial-Building Ground Source Heat Pump System in Sweden," Energies, MDPI, vol. 12(10), pages 1-34, May.
    4. Finn Richter & Peter Niemann & Matthias Schuck & Jürgen Grabe & Gerhard Schmitz, 2021. "Comparison of Conventional and Variable Borehole Heat Exchangers for Use in a Desiccant Assisted Air Conditioning System," Energies, MDPI, vol. 14(4), pages 1-12, February.
    5. Riccardo Fraboni & Gianluca Grazieschi & Simon Pezzutto & Benjamin Mitterrutzner & Eric Wilczynski, 2023. "Environmental Assessment of Residential Space Heating and Cooling Technologies in Europe: A Review of 11 European Member States," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    6. Igor Maciejewski & Sebastian Pecolt & Andrzej Błażejewski & Bartosz Jereczek & Tomasz Krzyzynski, 2024. "Experimental Study of the Energy Regenerated by a Horizontal Seat Suspension System under Random Vibration," Energies, MDPI, vol. 17(17), pages 1-18, August.
    7. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Rosengarten, Gary & Mojiri, Ahmad, 2025. "Feasibility and performance of coupled air-ground source heat pump systems with thermal storage," Energy, Elsevier, vol. 315(C).
    8. Schüppler, Simon & Fleuchaus, Paul & Duchesne, Antoine & Blum, Philipp, 2022. "Cooling supply costs of a university campus," Energy, Elsevier, vol. 249(C).
    9. Franziska Bockelmann & M. Norbert Fisch, 2019. "It Works—Long-Term Performance Measurement and Optimization of Six Ground Source Heat Pump Systems in Germany," Energies, MDPI, vol. 12(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    3. Edwards, K.C. & Finn, D.P., 2015. "Generalised water flow rate control strategy for optimal part load operation of ground source heat pump systems," Applied Energy, Elsevier, vol. 150(C), pages 50-60.
    4. Florian Heesen & Reinhard Madlener, 2016. "Consumer Behavior in Energy-Efficient Homes: The Limited Merits of Energy Performance Ratings as Benchmarks," FCN Working Papers 17/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    5. Wang, Wei & Chen, Jiayu & Huang, Gongsheng & Lu, Yujie, 2017. "Energy efficient HVAC control for an IPS-enabled large space in commercial buildings through dynamic spatial occupancy distribution," Applied Energy, Elsevier, vol. 207(C), pages 305-323.
    6. Zhang, Changxing & Hu, Songtao & Liu, Yufeng & Wang, Qing, 2016. "Optimal design of borehole heat exchangers based on hourly load simulation," Energy, Elsevier, vol. 116(P1), pages 1180-1190.
    7. Laura Michelle Leite Ribeiro & Taylana Piccinini Scolaro & Enedir Ghisi, 2025. "LEED Certification in Building Energy Efficiency: A Review of Its Performance Efficacy and Global Applicability," Sustainability, MDPI, vol. 17(5), pages 1-17, February.
    8. Liu, Jiangyan & Wang, Jiangyu & Li, Guannan & Chen, Huanxin & Shen, Limei & Xing, Lu, 2017. "Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques," Applied Energy, Elsevier, vol. 208(C), pages 522-539.
    9. Bojić, Milorad & Cvetković, Dragan & Bojić, Ljubiša, 2015. "Decreasing energy use and influence to environment by radiant panel heating using different energy sources," Applied Energy, Elsevier, vol. 138(C), pages 404-413.
    10. Lee, C.K., 2011. "Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation," Applied Energy, Elsevier, vol. 88(12), pages 4405-4410.
    11. Simone Mancin & Marco Noro, 2020. "Reversible Heat Pump Coupled with Ground Ice Storage for Annual Air Conditioning: An Energy Analysis," Energies, MDPI, vol. 13(23), pages 1-16, November.
    12. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    13. Tejeda De La Cruz, Alberto & Riviere, Philippe & Marchio, Dominique & Cauret, Odile & Milu, Anamaria, 2017. "Hardware in the loop test bench using Modelica: A platform to test and improve the control of heating systems," Applied Energy, Elsevier, vol. 188(C), pages 107-120.
    14. Sivasakthivel, T. & Murugesan, K. & Thomas, H.R., 2014. "Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept," Applied Energy, Elsevier, vol. 116(C), pages 76-85.
    15. Habtamu Tkubet Ebuy & Hind Bril El Haouzi & Riad Benelmir & Remi Pannequin, 2023. "Occupant Behavior Impact on Building Sustainability Performance: A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    16. Faith Ng’eno Chelang’at & Ranald Lawrence, 2024. "Always with the Best Intentions? Interrogating the Use of Sustainable Building Assessment Systems in Developing Countries: Kenya," Sustainability, MDPI, vol. 16(9), pages 1-24, May.
    17. Simon P. Melgaard & Kamilla H. Andersen & Anna Marszal-Pomianowska & Rasmus L. Jensen & Per K. Heiselberg, 2022. "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review," Energies, MDPI, vol. 15(12), pages 1-50, June.
    18. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    19. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    20. Anna Laura Pisello & Michael Bobker & Franco Cotana, 2012. "A Building Energy Efficiency Optimization Method by Evaluating the Effective Thermal Zones Occupancy," Energies, MDPI, vol. 5(12), pages 1-22, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:122:y:2018:i:c:p:429-442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.