IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i6p900-d837734.html
   My bibliography  Save this article

A Big Data-Based Commuting Carbon Emissions Accounting Method—A Case of Hangzhou

Author

Listed:
  • Song Li

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Fei Xue

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Chuyu Xia

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Jian Zhang

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Ao Bian

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Yuexi Lang

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Jun Zhou

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract

Commuting carbon emissions are an essential component of urban carbon emissions, and determining how to reduce them is an area of great debate among researchers. The current research lacks a tool and instrument that can extensively account for residents’ commuting. Traditional methods are mainly based on questionnaire surveys, which have low accuracy at spatial and temporal aspects. High accuracy carbon emission accounting methods can effectively assist urban planning and achieve precise urban emissions reductions. This study applies a taxi commuting carbon emissions accounting method divided into two main steps. Firstly, the carbon emissions of taxi trajectories are calculated using taxi trajectory data and a carbon emission calculation method developed based on VSP. Secondly, the taxi trajectory and POI data are used to filter the commuter trajectory with the help of a two-step moving search method. In this way, the taxi commuting carbon emissions were obtained. Then, the spatial distribution characteristics of residential taxi commuting carbon emissions are analysed by spatial autocorrelation tools, which could facilitate low carbon zoning management. A typical working day in Hangzhou was selected as the research object of this study. The results show that (1) morning peak commuting carbon emissions in the main urban area of Hangzhou reached 2065.14 kg per hour, accounting for 13.73% of all taxi travel carbon emissions; and evening peak commuting carbon emissions reached 732.2 kg per hour, accounting for 4% of all taxi travel carbon emissions; (2) At the grid level, the spatial distribution of commuting carbon emissions in Hangzhou shows a single central peak that decays in all directions; and (3) The results at the resident community scale show that urban public transport facilities influence resident community commuting carbon emissions. In areas such as at the urban-rural border, resident community commuting carbon emissions show high levels of aggregation, and in the main urban area, resident community commuting carbon emissions show low levels of aggregation. This study not only provides a new method of commuting investigation but also offers constructive suggestions for future carbon emission reduction under Hangzhou’s urban planning.

Suggested Citation

  • Song Li & Fei Xue & Chuyu Xia & Jian Zhang & Ao Bian & Yuexi Lang & Jun Zhou, 2022. "A Big Data-Based Commuting Carbon Emissions Accounting Method—A Case of Hangzhou," Land, MDPI, vol. 11(6), pages 1-18, June.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:900-:d:837734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/6/900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/6/900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Kyoungok, 2018. "Exploring the difference between ridership patterns of subway and taxi: Case study in Seoul," Journal of Transport Geography, Elsevier, vol. 66(C), pages 213-223.
    2. Yu Liu & Chaogui Kang & Song Gao & Yu Xiao & Yuan Tian, 2012. "Understanding intra-urban trip patterns from taxi trajectory data," Journal of Geographical Systems, Springer, vol. 14(4), pages 463-483, October.
    3. Dong, Zhaoyingzi & Xia, Chuyu & Fang, Kai & Zhang, Weiwen, 2022. "Effect of the carbon emissions trading policy on the co-benefits of carbon emissions reduction and air pollution control," Energy Policy, Elsevier, vol. 165(C).
    4. Yingting He & Chuyu Xia & Zhuang Shao & Jing Zhao, 2022. "The Spatiotemporal Evolution and Prediction of Carbon Storage: A Case Study of Urban Agglomeration in China’s Beijing-Tianjin-Hebei Region," Land, MDPI, vol. 11(6), pages 1-25, June.
    5. Chuyu Xia & Yan Li & Yanmei Ye & Zhou Shi & Jingming Liu, 2017. "Decomposed Driving Factors of Carbon Emissions and Scenario Analyses of Low-Carbon Transformation in 2020 and 2030 for Zhejiang Province," Energies, MDPI, vol. 10(11), pages 1-16, October.
    6. Li, Zhiming & Fan, Zhengxi & Song, Yan & Chai, Yangbo, 2021. "Assessing equity in park accessibility using a travel behavior-based G2SFCA method in Nanjing, China," Journal of Transport Geography, Elsevier, vol. 96(C).
    7. Garren, S.J. & Pinjari, A.R. & Brinkmann, R., 2011. "Carbon dioxide emission trends in cars and light trucks: A comparative analysis of emissions and methodologies for Florida's counties (2000 and 2008)," Energy Policy, Elsevier, vol. 39(9), pages 5287-5295, September.
    8. Tang, Jinjun & Liu, Fang & Wang, Yinhai & Wang, Hua, 2015. "Uncovering urban human mobility from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 140-153.
    9. Yang Si & Hongzhi Guan & Yuchao Cui, 2019. "Research on the Choice Behavior of Taxis and Express Services Based on the SEM-Logit Model," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    10. Sun, Daniel(Jian) & Ding, Xueqing, 2019. "Spatiotemporal evolution of ridesourcing markets under the new restriction policy: A case study in Shanghai," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 227-239.
    11. Rafiq, Rezwana & McNally, Michael G., 2022. "A structural analysis of the work tour behavior of transit commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 61-79.
    12. Tian Li & Peng Jing & Linchao Li & Dazhi Sun & Wenbo Yan, 2019. "Revealing the Varying Impact of Urban Built Environment on Online Car-Hailing Travel in Spatio-Temporal Dimension: An Exploratory Analysis in Chengdu, China," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    13. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    14. Jinlei Zhang & Feng Chen & Zijia Wang & Rui Wang & Shunwei Shi, 2018. "Spatiotemporal Patterns of Carbon Emissions and Taxi Travel Using GPS Data in Beijing," Energies, MDPI, vol. 11(3), pages 1-22, February.
    15. Xia, Chuyu & Chen, Bin, 2020. "Urban land-carbon nexus based on ecological network analysis," Applied Energy, Elsevier, vol. 276(C).
    16. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    17. Zhang, Xiaohu & Xu, Yang & Tu, Wei & Ratti, Carlo, 2018. "Do different datasets tell the same story about urban mobility — A comparative study of public transit and taxi usage," Journal of Transport Geography, Elsevier, vol. 70(C), pages 78-90.
    18. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei Zhang & Jia Tang & Jun Gao, 2023. "Examining the Effects of Built Environments and Individual Characteristics on Commuting Time under Spatial Heterogeneity: An Empirical Study in China Using HLM," Land, MDPI, vol. 12(8), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jincheng Wang & Qunqi Wu & Feng Mao & Yilong Ren & Zilin Chen & Yaqun Gao, 2021. "Influencing Factor Analysis and Demand Forecasting of Intercity Online Car-Hailing Travel," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    2. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    3. Xiong, Ziyue & Jian Li, & Wu, Hangbin, 2021. "Understanding operation patterns of urban online ride-hailing services: A case study of Xiamen," Transport Policy, Elsevier, vol. 101(C), pages 100-118.
    4. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    5. Chaogui Kang & Dongwan Fan & Hongzan Jiao, 2021. "Validating activity, time, and space diversity as essential components of urban vitality," Environment and Planning B, , vol. 48(5), pages 1180-1197, June.
    6. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    7. Apantri Peungnumsai & Apichon Witayangkurn & Masahiko Nagai & Hiroyuki Miyazaki, 2018. "A Taxi Zoning Analysis Using Large-Scale Probe Data: A Case Study for Metropolitan Bangkok," The Review of Socionetwork Strategies, Springer, vol. 12(1), pages 21-45, June.
    8. Xia, Dawen & Jiang, Shunying & Yang, Nan & Hu, Yang & Li, Yantao & Li, Huaqing & Wang, Lin, 2021. "Discovering spatiotemporal characteristics of passenger travel with mobile trajectory big data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    9. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    10. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.
    11. Zhenbao Wang & Xin Gong & Yuchen Zhang & Shuyue Liu & Ning Chen, 2023. "Multi-Scale Geographically Weighted Elasticity Regression Model to Explore the Elastic Effects of the Built Environment on Ride-Hailing Ridership," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    12. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    13. Jinjun Tang & Fan Gao & Fang Liu & Wenhui Zhang & Yong Qi, 2019. "Understanding Spatio-Temporal Characteristics of Urban Travel Demand Based on the Combination of GWR and GLM," Sustainability, MDPI, vol. 11(19), pages 1-19, October.
    14. Tong Zhou & Xintao Liu & Zhen Qian & Haoxuan Chen & Fei Tao, 2019. "Dynamic Update and Monitoring of AOI Entrance via Spatiotemporal Clustering of Drop-Off Points," Sustainability, MDPI, vol. 11(23), pages 1-20, December.
    15. Jiashan Yu & Jun Zhou & Jing Zhao & Ran Chen & Xueqi Yao & Xiaomin Luo & Sijia Jiang & Ziyang Wang, 2023. "Agroecological Risk Assessment Based on Coupling of Water and Land Resources—A Case of Heihe River Basin," Land, MDPI, vol. 12(4), pages 1-16, March.
    16. Chen, Chao & Feng, Tao & Ding, Chuan & Yu, Bin & Yao, Baozhen, 2021. "Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model," Journal of Transport Geography, Elsevier, vol. 96(C).
    17. Lixin Yan & Bowen Sheng & Yi He & Shan Lu & Junhua Guo, 2022. "Forecasting and Planning Method for Taxi Travel Combining Carbon Emission and Revenue Factors—A Case Study in China," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    18. Jing Wu & Changlong Ling & Xinzhuo Li, 2019. "Study on the Accessibility and Recreational Development Potential of Lakeside Areas Based on Bike-Sharing Big Data Taking Wuhan City as an Example," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    19. Mepparambath, Rakhi Manohar & Soh, Yong Sheng & Jayaraman, Vasundhara & Tan, Hong En & Ramli, Muhamad Azfar, 2023. "A novel modelling approach of integrated taxi and transit mode and route choice using city-scale emerging mobility data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    20. Xintao Liu & Joseph Y. J. Chow & Songnian Li, 2018. "Online monitoring of local taxi travel momentum and congestion effects using projections of taxi GPS-based vector fields," Journal of Geographical Systems, Springer, vol. 20(3), pages 253-274, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:900-:d:837734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.