IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v118y2024ics0966692324001455.html
   My bibliography  Save this article

Exploring competitiveness of taxis to ride-hailing services from a multidimensional spatio-temporal perspective: A case study in Beijing, China

Author

Listed:
  • Luo, Yihao
  • Huang, Ailing
  • He, Zhengbing
  • Zeng, Jiaqi
  • Wang, Dianhai

Abstract

As the sharing economy expands in China, the emergence of ride-hailing services has diminished the market share of the taxi industry. As a regulated and publicly convenient service with a dedicated customer base, traditional taxi industry needs to improve its own competitiveness and maintain its market share. However, the specific circumstances under which taxis can gain a competitive edge over ride-hailing services are not well-understood. Aiming to uncover the competitive potential of taxis in the ride-source market, this study proposes a methodology to explore the Competition and Cooperation Relationship (CCR) between taxis and ride-hailing services on a multidimensional spatio-temporal scale. By taking Beijing, China as a case study, we first compare different impacts of Points of Interest (POI) on the traffic volume of taxis/ride-hailing services through Geographically and Temporally Weighted Regression (GTWR) models, and explore the corresponding times and locations where taxis/ride-hailing services are more likely to attract passengers. Based on the findings that there are strong correlations between traffic volume and spatio-temporal conditions, we establish the Competition-Cooperation Index (CCI) as a quantitative measure to characterize the CCR and then analyze the spatio-temporal distribution of CCI to identify the times and locations where taxis hold advantages in cooperative or competitive relationship relative to ride-hailing services. Furthermore, we investigate the underlying reasons for these patterns, discovering that CCI has a close connection with land use. The results of our analysis show that taxis exhibit competitive advantages over ride-hailing services under some specific circumstances and can further enhance their competitiveness by proposed targeted measures. The findings of this study provide valuable insights for both industries in formulating growth strategies and for governmental agencies in setting policies.

Suggested Citation

  • Luo, Yihao & Huang, Ailing & He, Zhengbing & Zeng, Jiaqi & Wang, Dianhai, 2024. "Exploring competitiveness of taxis to ride-hailing services from a multidimensional spatio-temporal perspective: A case study in Beijing, China," Journal of Transport Geography, Elsevier, vol. 118(C).
  • Handle: RePEc:eee:jotrge:v:118:y:2024:i:c:s0966692324001455
    DOI: 10.1016/j.jtrangeo.2024.103936
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692324001455
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2024.103936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    2. Zhang, Mengzhu & He, Shenjing & Zhao, Pengjun, 2018. "Revisiting inequalities in the commuting burden: Institutional constraints and job-housing relationships in Beijing," Journal of Transport Geography, Elsevier, vol. 71(C), pages 58-71.
    3. Felipe F. Dias & PatrĂ­cia S. Lavieri & Venu M. Garikapati & Sebastian Astroza & Ram M. Pendyala & Chandra R. Bhat, 2017. "A behavioral choice model of the use of car-sharing and ride-sourcing services," Transportation, Springer, vol. 44(6), pages 1307-1323, November.
    4. Ting Wang & Yong Zhang & Meiye Li & Lei Liu, 2019. "How Do Passengers with Different Using Frequencies Choose between Traditional Taxi Service and Online Car-Hailing Service? A Case Study of Nanjing, China," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    5. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
    6. repec:cdl:itsrrp:qt60v8r346 is not listed on IDEAS
    7. Yang Si & Hongzhi Guan & Yuchao Cui, 2019. "Research on the Choice Behavior of Taxis and Express Services Based on the SEM-Logit Model," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    8. Tang, Jinjun & Gao, Fan & Han, Chunyang & Cen, Xuekai & Li, Zhitao, 2021. "Uncovering the spatially heterogeneous effects of shared mobility on public transit and taxi," Journal of Transport Geography, Elsevier, vol. 95(C).
    9. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
    10. Sun, Daniel(Jian) & Ding, Xueqing, 2019. "Spatiotemporal evolution of ridesourcing markets under the new restriction policy: A case study in Shanghai," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 227-239.
    11. Chen, Chao & Feng, Tao & Ding, Chuan & Yu, Bin & Yao, Baozhen, 2021. "Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model," Journal of Transport Geography, Elsevier, vol. 96(C).
    12. Ma, Rui & Zhang, H.M., 2017. "The morning commute problem with ridesharing and dynamic parking charges," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 345-374.
    13. Li, Xijing & Ma, Xinlin & Wilson, Bev, 2021. "Beyond absolute space: An exploration of relative and relational space in Shanghai using taxi trajectory data," Journal of Transport Geography, Elsevier, vol. 93(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Weijie & Wang, Wei & Hua, Xuedong & Zhao, De & Ngoduy, Dong, 2025. "Dynamic patterns of intercity mobility and influencing factors: Insights from similarities in spatial time-series," Journal of Transport Geography, Elsevier, vol. 124(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song Li & Fei Xue & Chuyu Xia & Jian Zhang & Ao Bian & Yuexi Lang & Jun Zhou, 2022. "A Big Data-Based Commuting Carbon Emissions Accounting Method—A Case of Hangzhou," Land, MDPI, vol. 11(6), pages 1-18, June.
    2. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    3. Haitao Yu & Zhong-Ren Peng, 2020. "The impacts of built environment on ridesourcing demand: A neighbourhood level analysis in Austin, Texas," Urban Studies, Urban Studies Journal Limited, vol. 57(1), pages 152-175, January.
    4. Zhitao Li & Xiaolu Wang & Fan Gao & Jinjun Tang & Hanmeng Xu, 2024. "Analysis of mobility patterns for urban taxi ridership: the role of the built environment," Transportation, Springer, vol. 51(4), pages 1409-1431, August.
    5. Wu, Tian & Wang, Shouyang & Wang, Lining & Tang, Xiao, 2022. "Contribution of China's online car-hailing services to its 2050 carbon target: Energy consumption assessment based on the GCAM-SE model," Energy Policy, Elsevier, vol. 160(C).
    6. Zhenbao Wang & Xin Gong & Yuchen Zhang & Shuyue Liu & Ning Chen, 2023. "Multi-Scale Geographically Weighted Elasticity Regression Model to Explore the Elastic Effects of the Built Environment on Ride-Hailing Ridership," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    7. Xiong, Ziyue & Jian Li, & Wu, Hangbin, 2021. "Understanding operation patterns of urban online ride-hailing services: A case study of Xiamen," Transport Policy, Elsevier, vol. 101(C), pages 100-118.
    8. Hasnine, Md Sami & Hawkins, Jason & Habib, Khandker Nurul, 2021. "Effects of built environment and weather on demands for transportation network company trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 171-185.
    9. Goodspeed, Robert & Xie, Tian & Dillahunt, Tawanna R. & Lustig, Josh, 2019. "An alternative to slow transit, drunk driving, and walking in bad weather: An exploratory study of ridesourcing mode choice and demand," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    10. Jincheng Wang & Qunqi Wu & Feng Mao & Yilong Ren & Zilin Chen & Yaqun Gao, 2021. "Influencing Factor Analysis and Demand Forecasting of Intercity Online Car-Hailing Travel," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    11. Chen, Chao & Feng, Tao & Ding, Chuan & Yu, Bin & Yao, Baozhen, 2021. "Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model," Journal of Transport Geography, Elsevier, vol. 96(C).
    12. HUO, Zhengqi & YANG, Xiaobao & LIU, Xiaobing & YAN, Xuedong, 2024. "Spatio-temporal analysis on online designated driving based on empirical data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    13. Lei, Jiayou & He, Min & Shi, Zhuangbin & He, Mingwei & Liu, Yang & Qian, Qian & Qian, Huimin, 2024. "How does the built environment affect intermodal transit demand across different spatiotemporal contexts?," Journal of Transport Geography, Elsevier, vol. 121(C).
    14. Lyu, Tao & Wang, Yuanqing & Ji, Shujuan & Feng, Tao & Wu, Zhouhao, 2023. "A multiscale spatial analysis of taxi ridership," Journal of Transport Geography, Elsevier, vol. 113(C).
    15. Zhao, Xingrong & Shao, Shuai & Ma, Ye & Ma, Tieju, 2023. "Who Embraces shared mobility and why? A survey in Beijing and Shanghai, China," Energy, Elsevier, vol. 283(C).
    16. Huang, Guan & Liang, Yuebing & Zhao, Zhan, 2023. "Understanding market competition between transportation network companies using big data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    17. Huang, Lu & Li, Yuan & Huang, Xing & Zhou, Liying, 2021. "How social distance affects the intention and behavior of collaborative consumption: A study based on online car-hailing service," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    18. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    19. Chen, Fangxi & Yin, Zhiwei & Ye, Yingwei & Sun, Daniel(Jian), 2020. "Taxi hailing choice behavior and economic benefit analysis of emission reduction based on multi-mode travel big data," Transport Policy, Elsevier, vol. 97(C), pages 73-84.
    20. Zhao, Chuyun & Tang, Jinjun & Kong, Xiangxin & Yu, Tianjian & Li, Zhitao, 2024. "Emission analysis of multi-mode public transportation based on joint choice model considering built environment factors," Energy, Elsevier, vol. 309(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:118:y:2024:i:c:s0966692324001455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.