IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i6p767-d822765.html
   My bibliography  Save this article

An Exploration of the Land–(Renewable) Energy Nexus

Author

Listed:
  • Bouchra El Houda Lamhamedi

    (School of Engineering and Design, Technische Universität München (TUM), Arcisstrasse 21, 80333 Munich, Germany)

  • Walter Timo de Vries

    (School of Engineering and Design, Technische Universität München (TUM), Arcisstrasse 21, 80333 Munich, Germany)

Abstract

The need to understand the connection between land and energy has gained prominence in the calls to opt for renewable energy as part of the climate change mitigation actions. This need derives from the fact that renewable energy resources are site-specific and require rightful access and use of land. The impacts on landscape, land tenure, and land-use patterns of constructing energy facilities are significant, and they may subsequently undermine the authority of local communities. Still, the connection between land and energy is not yet part of integrated development policies and political debates when deciding on renewable energy projects. Therefore, this study critically reviews the land–energy nexus with the aim to understand and explain how the uptake of renewable energy is shaping the land–energy nexus and how renewable energy technologies are evolving and interacting in different regions of the world, particularly in the Global South. Theoretically, the land–energy nexus tends to reflect a dual tension between those who support the rapid expansion of renewable energy projects and those who oppose it due to concerns over land pressure and social impacts. We consider that this contrast is ruled by both the ecological modernization paradigm and the environmental and social justice paradigm, as part of wider environmental and social debates. The study adopts an integrative literature review built on the analysis of existing literature and deductive logical reasoning to create new, exhaustive scientific knowledge focusing on three interdependent dimensions: land requirements and planning policy, environmental impacts, and public opposition, as an informative guidance for future research and policies. The multiple forms of social dispute and agency demonstrate that dominant narratives supporting renewables act as a modern technological fix but provide only a partial solution for the climate and energy crisis. The deployment of renewable energy creates land pressures and spatial patterns of uneven development. These are visible by numerous environmental and social outcomes, which may imperil the sustainability of the investment. Hence, there is the need of a land–energy balance as a new aspect of sustainable development.

Suggested Citation

  • Bouchra El Houda Lamhamedi & Walter Timo de Vries, 2022. "An Exploration of the Land–(Renewable) Energy Nexus," Land, MDPI, vol. 11(6), pages 1-17, May.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:767-:d:822765
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/6/767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/6/767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nonhebel, Sanderine, 2005. "Renewable energy and food supply: will there be enough land?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 191-201, April.
    2. Pham Huu Ty & A. C. M. Van Westen & Annelies Zoomers, 2013. "Compensation and Resettlement Policies after Compulsory Land Acquisition for Hydropower Development in Vietnam: Policy and Practice," Land, MDPI, vol. 2(4), pages 1-27, November.
    3. Brannstrom, Christian & Gorayeb, Adryane & de Sousa Mendes, Jocicléa & Loureiro, Caroline & Meireles, Antonio Jeovah de Andrade & Silva, Edson Vicente da & Freitas, Ana Larissa Ribeiro de & Oliveira, , 2017. "Is Brazilian wind power development sustainable? Insights from a review of conflicts in Ceará state," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 62-71.
    4. D׳Souza, Clare & Yiridoe, Emmanuel K., 2014. "Social acceptance of wind energy development and planning in rural communities of Australia: A consumer analysis," Energy Policy, Elsevier, vol. 74(C), pages 262-270.
    5. Wolsink, Maarten, 2007. "Planning of renewables schemes: Deliberative and fair decision-making on landscape issues instead of reproachful accusations of non-cooperation," Energy Policy, Elsevier, vol. 35(5), pages 2692-2704, May.
    6. Prados, María-José, 2010. "Renewable energy policy and landscape management in Andalusia, Spain: The facts," Energy Policy, Elsevier, vol. 38(11), pages 6900-6909, November.
    7. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
    8. Poggi, Francesca & Firmino, Ana & Amado, Miguel, 2018. "Planning renewable energy in rural areas: Impacts on occupation and land use," Energy, Elsevier, vol. 155(C), pages 630-640.
    9. Prince Donkor Ameyaw & Walter Timo de Vries, 2021. "Toward Smart Land Management: Land Acquisition and the Associated Challenges in Ghana. A Look into a Blockchain Digital Land Registry for Prospects," Land, MDPI, vol. 10(3), pages 1-22, March.
    10. Walker, Gordon & Devine-Wright, Patrick & Hunter, Sue & High, Helen & Evans, Bob, 2010. "Trust and community: Exploring the meanings, contexts and dynamics of community renewable energy," Energy Policy, Elsevier, vol. 38(6), pages 2655-2663, June.
    11. Noriko Akita & Yasuo Ohe & Shoko Araki & Makoto Yokohari & Toru Terada & Jay Bolthouse, 2020. "Managing Conflicts with Local Communities over the Introduction of Renewable Energy: The Solar-Rush Experience in Japan," Land, MDPI, vol. 9(9), pages 1-20, August.
    12. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    13. Al-mulali, Usama & Solarin, Sakiru Adebola & Sheau-Ting, Low & Ozturk, Ilhan, 2016. "Does moving towards renewable energy causes water and land inefficiency? An empirical investigation," Energy Policy, Elsevier, vol. 93(C), pages 303-314.
    14. Antonia Proka & Matthijs Hisschemöller & Derk Loorbach, 2018. "Transition without Conflict? Renewable Energy Initiatives in the Dutch Energy Transition," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    15. Mariita, Nicholas O., 2002. "The impact of large-scale renewable energy development on the poor: environmental and socio-economic impact of a geothermal power plant on a poor rural community in Kenya," Energy Policy, Elsevier, vol. 30(11-12), pages 1119-1128, September.
    16. Wytske O. Chamberlain & Ward Anseeuw, 2018. "Inclusive Businesses and Land Reform: Corporatization or Transformation?," Land, MDPI, vol. 7(1), pages 1-17, January.
    17. Shiraishi, Kenji & Shirley, Rebekah G. & Kammen, Daniel M., 2019. "Geospatial multi-criteria analysis for identifying high priority clean energy investment opportunities: A case study on land-use conflict in Bangladesh," Applied Energy, Elsevier, vol. 235(C), pages 1457-1467.
    18. Cicia, Gianni & Cembalo, Luigi & Del Giudice, Teresa & Palladino, Andrea, 2012. "Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey," Energy Policy, Elsevier, vol. 42(C), pages 59-66.
    19. Bridge, Gavin & Bouzarovski, Stefan & Bradshaw, Michael & Eyre, Nick, 2013. "Geographies of energy transition: Space, place and the low-carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 331-340.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noriko Akita & Yasuo Ohe & Shoko Araki & Makoto Yokohari & Toru Terada & Jay Bolthouse, 2020. "Managing Conflicts with Local Communities over the Introduction of Renewable Energy: The Solar-Rush Experience in Japan," Land, MDPI, vol. 9(9), pages 1-20, August.
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    3. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    4. Simón, Xavier & Copena, Damián & Montero, María, 2019. "Strong wind development with no community participation. The case of Galicia (1995–2009)," Energy Policy, Elsevier, vol. 133(C).
    5. Hallan, Celia & González, Ainhoa, 2020. "Adaptive responses to landscape changes from onshore wind energy development in the Republic of Ireland," Land Use Policy, Elsevier, vol. 97(C).
    6. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    7. Cousse, Julia, 2021. "Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. van der Plank, Sien & Walsh, Bríd & Behrens, Paul, 2016. "The expected impacts of mining: Stakeholder perceptions of a proposed mineral sands mine in rural Australia," Resources Policy, Elsevier, vol. 48(C), pages 129-136.
    10. O'Sullivan, Kate & Golubchikov, Oleg & Mehmood, Abid, 2020. "Uneven energy transitions: Understanding continued energy peripheralization in rural communities," Energy Policy, Elsevier, vol. 138(C).
    11. Leer Jørgensen, Marie & Anker, Helle Tegner & Lassen, Jesper, 2020. "Distributive fairness and local acceptance of wind turbines: The role of compensation schemes," Energy Policy, Elsevier, vol. 138(C).
    12. Windemer, Rebecca, 2019. "Considering time in land use planning: An assessment of end-of-life decision making for commercially managed onshore wind schemes," Land Use Policy, Elsevier, vol. 87(C).
    13. von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
    14. Kim, Eun-Sung & Chung, Ji-Bum, 2019. "The memory of place disruption, senses, and local opposition to Korean wind farms," Energy Policy, Elsevier, vol. 131(C), pages 43-52.
    15. Elena De Luca & Cecilia Nardi & Laura Gaetana Giuffrida & Michael Krug & Maria Rosaria Di Nucci, 2020. "Explaining Factors Leading to Community Acceptance of Wind Energy. Results of an Expert Assessment," Energies, MDPI, vol. 13(8), pages 1-23, April.
    16. Ceglarz, Andrzej & Beneking, Andreas & Ellenbeck, Saskia & Battaglini, Antonella, 2017. "Understanding the role of trust in power line development projects: Evidence from two case studies in Norway," Energy Policy, Elsevier, vol. 110(C), pages 570-580.
    17. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    18. Landeta-Manzano, Beñat & Arana-Landín, Germán & Calvo, Pilar M. & Heras-Saizarbitoria, Iñaki, 2018. "Wind energy and local communities: A manufacturer’s efforts to gain acceptance," Energy Policy, Elsevier, vol. 121(C), pages 314-324.
    19. Júlio César Holanda Araújo & Wallason Farias de Souza & Antonio Jeovah de Andrade Meireles & Christian Brannstrom, 2020. "Sustainability Challenges of Wind Power Deployment in Coastal Ceará State, Brazil," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
    20. Hoicka, Christina E. & Conroy, Jessica & Berka, Anna L., 2021. "Reconfiguring actors and infrastructure in city renewable energy transitions: A regional perspective," Energy Policy, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:767-:d:822765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.