IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i3p362-d762208.html
   My bibliography  Save this article

Scenario Analysis of Livestock Carrying Capacity Risk in Farmland from the Perspective of Planting and Breeding Balance in Northeast China

Author

Listed:
  • Zhe Zhao

    (School of Economics, Liaoning University, Shenyang 110136, China)

  • Xiangzheng Deng

    (University of Chinese Academy of Sciences, Beijing 100101, China
    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Fan Zhang

    (University of Chinese Academy of Sciences, Beijing 100101, China
    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Zhihui Li

    (University of Chinese Academy of Sciences, Beijing 100101, China
    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Wenjiao Shi

    (University of Chinese Academy of Sciences, Beijing 100101, China
    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Zhigang Sun

    (University of Chinese Academy of Sciences, Beijing 100101, China
    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Xuezhen Zhang

    (University of Chinese Academy of Sciences, Beijing 100101, China
    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

In this paper, we selected the northeast region as a study area from the perspective of soil nutrient demand, calculated the livestock carrying capacity of farmland under three scenarios where nitrogen nutrient accounts for 35% (low level), 45% (medium level), and 55% (high level) of fertilization, and carried out a risk analysis. The results show that the scale of husbandry breeding is expanding and the scale of the planting industry has remained basically unchanged. Under the three scenarios, there were 23 regions where the livestock manure exceeded the maximum value that could be absorbed by farmland in 2008 and 28 regions in 2019. These regions in the potential area are mostly located in Heilongjiang province and the regions in the restricted area are mostly located in Liaoning Province. On the whole, the northeast region is generally faced with the problem of livestock overloading, and the insufficient utilization and treatment capacity of livestock manure poses a huge threat to regional ecological security. Based on this, adjusting the structure of regional planting and breeding, promoting the development of the livestock manure processing industry, enhancing the production capacity of organic fertilizer, and constructing an integrated pattern of regional planting and breeding are effective ways to realize the sustainable utilization of farmland in northeast China.

Suggested Citation

  • Zhe Zhao & Xiangzheng Deng & Fan Zhang & Zhihui Li & Wenjiao Shi & Zhigang Sun & Xuezhen Zhang, 2022. "Scenario Analysis of Livestock Carrying Capacity Risk in Farmland from the Perspective of Planting and Breeding Balance in Northeast China," Land, MDPI, vol. 11(3), pages 1-13, March.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:362-:d:762208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/3/362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/3/362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yongsheng & Li, Yuheng, 2019. "Promotion of degraded land consolidation to rural poverty alleviation in the agro-pastoral transition zone of northern China," Land Use Policy, Elsevier, vol. 88(C).
    2. Guo, Xudong & Chang, Qing & Liu, Xiao & Bao, Huimin & Zhang, Yuepeng & Tu, Xueying & Zhu, Chunxia & Lv, Chunyan & Zhang, Yanyu, 2018. "Multi-dimensional eco-land classification and management for implementing the ecological redline policy in China," Land Use Policy, Elsevier, vol. 74(C), pages 15-31.
    3. Deng, Xiangzheng & Gibson, John, 2019. "Improving eco-efficiency for the sustainable agricultural production: A case study in Shandong, China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 394-400.
    4. Zhilong Wu & Bo Li & Xuhuan Dai & Ying Hou, 2020. "Coupled Relationship between Rural Livelihoods and the Environment at a Village Scale: A Case Study in the Mongolian Plateau," Land, MDPI, vol. 9(2), pages 1-22, January.
    5. Shuqin Jin & Bin Zhang & Bi Wu & Dongmei Han & Yu Hu & Chenchen Ren & Chuanzhen Zhang & Xun Wei & Yan Wu & Arthur P. J. Mol & Stefan Reis & Baojing Gu & Jie Chen, 2021. "Decoupling livestock and crop production at the household level in China," Nature Sustainability, Nature, vol. 4(1), pages 48-55, January.
    6. Khoshnevisan, Benyamin & Duan, Na & Tsapekos, Panagiotis & Awasthi, Mukesh Kumar & Liu, Zhidan & Mohammadi, Ali & Angelidaki, Irini & Tsang, Daniel CW. & Zhang, Zengqiang & Pan, Junting & Ma, Lin & Ag, 2021. "A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Rui Zhao & Junying Li & Kening Wu & Long Kang, 2021. "Cultivated Land Use Zoning Based on Soil Function Evaluation from the Perspective of Black Soil Protection," Land, MDPI, vol. 10(6), pages 1-29, June.
    8. Duan, Yaming & Wang, Hui & Huang, An & Xu, Yueqing & Lu, Longhui & Ji, Zhengxin, 2021. "Identification and spatial-temporal evolution of rural “production-living-ecological” space from the perspective of villagers’ behavior – A case study of Ertai Town, Zhangjiakou City," Land Use Policy, Elsevier, vol. 106(C).
    9. Ge Song & Hongmei Zhang, 2021. "Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China," Land, MDPI, vol. 10(2), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yixuan Du & Zhe Zhao & Shuang Liu & Zhihui Li, 2023. "The Impact of Agricultural Labor Migration on the Urban–Rural Dual Economic Structure: The Case of Liaoning Province, China," Land, MDPI, vol. 12(3), pages 1-15, March.
    2. Lei Gao & Taowu Pei & Jingran Zhang & Yu Tian, 2022. "The “Pollution Halo” Effect of FDI: Evidence from the Chinese Sichuan–Chongqing Urban Agglomeration," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    3. Zhe Zhao & Pengyu Peng & Fan Zhang & Jiayin Wang & Hongxuan Li, 2022. "The Impact of the Urbanization Process on Agricultural Technical Efficiency in Northeast China," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    4. Lei Gao & Jingran Zhang & Yu Tian & Xinyu Liu & Shuxin Guan & Yuhong Wu, 2023. "Study on the Impact of Collaborative Agglomeration of Manufacturing and Producer Services on PM 2.5 Pollution: Evidence from Urban Agglomerations in the Middle Reaches of the Yangtze River in China," IJERPH, MDPI, vol. 20(4), pages 1-18, February.
    5. Lei Gao & Junxuan Guo & Xu Wang & Yu Tian & Tielong Wang & Jingran Zhang, 2022. "Research on the Influence of Different Types of Industrial Agglomeration on Ecological Efficiency in Western China," Sustainability, MDPI, vol. 14(21), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Zhao & Pengyu Peng & Fan Zhang & Jiayin Wang & Hongxuan Li, 2022. "The Impact of the Urbanization Process on Agricultural Technical Efficiency in Northeast China," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    2. Li, Hanbing & Jin, Xiaobin & McCormick, Barbara Prack & Tittonell, Pablo & Liu, Jing & Han, Bo & Sun, Rui & Zhou, Yinkang, 2023. "Analysis of the contribution of land consolidation to sustainable poverty alleviation under various natural conditions," Land Use Policy, Elsevier, vol. 133(C).
    3. Chunyang Zhang & Junjie Chen, 2023. "Spatial Morphology Optimization of Rural Planning Based on Space of Flow: An Empirical Study of Zepan Village in China," Land, MDPI, vol. 12(4), pages 1-23, April.
    4. Zhe Zhao & Yuping Bai & Xiangzheng Deng & Jiancheng Chen & Jian Hou & Zhihui Li, 2020. "Changes in Livestock Grazing Efficiency Incorporating Grassland Productivity: The Case of Hulun Buir, China," Land, MDPI, vol. 9(11), pages 1-13, November.
    5. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    6. Rahul Kadam & Sangyeol Jo & Jonghwa Lee & Kamonwan Khanthong & Heewon Jang & Jungyu Park, 2024. "A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management," Energies, MDPI, vol. 17(3), pages 1-27, January.
    7. Cao, Jianjun & Wei, Chen & Adamowski, Jan F. & Zhou, Junju & Liu, Chunfang & Zhu, Guofeng & Dong, Xiaogang & Zhang, Xiaofang & Zhao, Huijun & Feng, Qi, 2020. "Could arid and semi-arid abandoned lands prove ecologically or economically valuable if they afford greater soil organic carbon storage than afforested lands in China’s Loess Plateau?," Land Use Policy, Elsevier, vol. 99(C).
    8. Yue Jiang & Yue Zhang & Hong Li, 2023. "Research Progress and Analysis on Comprehensive Utilization of Livestock and Poultry Biogas Slurry as Agricultural Resources," Agriculture, MDPI, vol. 13(12), pages 1-17, November.
    9. Jinkai Li & Jueying Chen & Heguang Liu, 2021. "Sustainable Agricultural Total Factor Productivity and Its Spatial Relationship with Urbanization in China," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    10. Yuan Luo & Xiangzhuo Meng & Yuan Liu & Kokyo Oh & Hongyan Cheng, 2023. "Using Time-to-Event Model in Seed Germination Test to Evaluate Maturity during Cow Dung Composting," Sustainability, MDPI, vol. 15(5), pages 1-9, February.
    11. Haicong Li & Lu Wang & Jianzhou Gong & A-Xing Zhu & Yueming Hu, 2021. "Land-Use Modes of the Dike–Pond System in the Pearl River Delta of China and Implications for Rural Revitalization," Land, MDPI, vol. 10(5), pages 1-20, April.
    12. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Ester Scotto di Perta & Raffaele Grieco & Stefano Papirio & Giovanni Esposito & Elena Cervelli & Marco Bovo & Stefania Pindozzi, 2023. "Ammonia Air Stripping from Different Livestock Effluents Prior to and after Anaerobic Digestion," Sustainability, MDPI, vol. 15(12), pages 1-10, June.
    14. Li, Jiaxin & Wang, Zihan & Cheng, Xin & Shuai, Jing & Shuai, Chuanmin & Liu, Jing, 2020. "Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China," Energy, Elsevier, vol. 201(C).
    15. Minjuan Lv & Zhiting Chen & Lingling Yao & Xiaohu Dang & Peng Li & Xiaoshu Cao, 2022. "Potential Zoning of Construction Land Consolidation in the Loess Plateau Based on the Evolution of Human–Land Relationship," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    16. Akash Jamil & Muhammad Zubair & Bryan A. Endress, 2023. "Influence of Pastoral Settlements Gradient on Vegetation Dynamics and Nutritional Characteristics in Arid Rangelands," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    17. Jianhui Dong & Wenju Yun & Kening Wu & Shaoshuai Li & Bingrui Liu & Qiaoyuan Lu, 2023. "Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China," Land, MDPI, vol. 12(2), pages 1-22, February.
    18. Wu, Zhilong & Dai, Xuhuan & Li, Bo & Hou, Ying, 2021. "Livelihood consequences of the Grain for Green Programme across regional and household scales: A case study in the Loess Plateau," Land Use Policy, Elsevier, vol. 111(C).
    19. Rong Guo & Tong Wu & Mengran Liu & Mengshi Huang & Luigi Stendardo & Yutong Zhang, 2019. "The Construction and Optimization of Ecological Security Pattern in the Harbin-Changchun Urban Agglomeration, China," IJERPH, MDPI, vol. 16(7), pages 1-18, April.
    20. Yin, Qiqi & Sui, Xueyan & Ye, Bei & Zhou, Yujie & Li, Chengqiang & Zou, Mengmeng & Zhou, Shenglu, 2022. "What role does land consolidation play in the multi-dimensional rural revitalization in China? A research synthesis," Land Use Policy, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:362-:d:762208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.