IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i4p841-d1117158.html
   My bibliography  Save this article

Spatial Morphology Optimization of Rural Planning Based on Space of Flow: An Empirical Study of Zepan Village in China

Author

Listed:
  • Chunyang Zhang

    (School of Labor Economics, Capital University of Economics and Business, Beijing 100070, China)

  • Junjie Chen

    (School of Public Affairs, Xiamen University, Xiamen 361005, China)

Abstract

The inadequate consideration of livable rural spatial morphology in rural planning has impeded the further advancement of the rural social system, resulting in a challenge for rural residents to establish an appealing living experience that distinguishes itself from urban areas. This situation calls for an urgent exploration of livable spatial morphology based on human-centered principles, as well as an investigation of planning spatial morphology optimization mechanisms that consider ecological backgrounds and human settlement needs. In response to this issue, this study employs the theory of flow space and constructs a framework for the optimization of rural spatial methodology. By integrating ecological and sociological analysis methods, the study identifies the “flow” structure of spatial association in rural ecosystems through ecological network analysis, and identifies the “flow” structure of behavioral association in rural human systems through social network analysis. Based on these findings, the complex network morphologies are evaluated and screened. To test the effectiveness of this framework, the study examines the spatial morphology of four planning options through case empirical analysis in Zepan Village, Hebei Province, China. The research results demonstrate that the framework can help achieve the goal of optimizing rural spatial morphology, improve existing planning practices that prioritize single plans and disregard the selection of multiple plans, and serve as an effective tool to aid planners in tackling complex planning problems by balancing scientific principles and empirical values.

Suggested Citation

  • Chunyang Zhang & Junjie Chen, 2023. "Spatial Morphology Optimization of Rural Planning Based on Space of Flow: An Empirical Study of Zepan Village in China," Land, MDPI, vol. 12(4), pages 1-23, April.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:4:p:841-:d:1117158
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/4/841/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/4/841/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan, Yuan & Wang, Mingshu & Zhu, Yi & Huang, Xianjin & Xiong, Xuefeng, 2020. "Urbanization’s effects on the urban-rural income gap in China: A meta-regression analysis," Land Use Policy, Elsevier, vol. 99(C).
    2. Balta, Sıla & Atik, Meryem, 2022. "Rural planning guidelines for urban-rural transition zones as a tool for the protection of rural landscape characters and retaining urban sprawl: Antalya case from Mediterranean," Land Use Policy, Elsevier, vol. 119(C).
    3. Zhilong Wu & Bo Li & Xuhuan Dai & Ying Hou, 2020. "Coupled Relationship between Rural Livelihoods and the Environment at a Village Scale: A Case Study in the Mongolian Plateau," Land, MDPI, vol. 9(2), pages 1-22, January.
    4. Lin Chu & Tiancheng Sun & Tianwei Wang & Zhaoxia Li & Chongfa Cai, 2018. "Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA)," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
    5. Zhijie Wang & Yan Liu & Yixin Li & Yuan Su, 2022. "Response of Ecosystem Health to Land Use Changes and Landscape Patterns in the Karst Mountainous Regions of Southwest China," IJERPH, MDPI, vol. 19(6), pages 1-18, March.
    6. Cong Chong & Meng Cai & Ximing Yue, 2022. "Focus shift needed: From development-oriented to social security-based poverty alleviation in rural China," Economic and Political Studies, Taylor & Francis Journals, vol. 10(1), pages 62-84, January.
    7. Lee, Cha-Hee, 2020. "Understanding rural landscape for better resident-led management: Residents’ perceptions on rural landscape as everyday landscapes," Land Use Policy, Elsevier, vol. 94(C).
    8. Chao Wei & Zuo Zhang & Sheng Ye & Mengxi Hong & Wenwen Wang, 2021. "Spatial-Temporal Divergence and Driving Mechanisms of Urban-Rural Sustainable Development: An Empirical Study Based on Provincial Panel Data in China," Land, MDPI, vol. 10(10), pages 1-21, September.
    9. Duan, Yaming & Wang, Hui & Huang, An & Xu, Yueqing & Lu, Longhui & Ji, Zhengxin, 2021. "Identification and spatial-temporal evolution of rural “production-living-ecological” space from the perspective of villagers’ behavior – A case study of Ertai Town, Zhangjiakou City," Land Use Policy, Elsevier, vol. 106(C).
    10. Yang, Xin & Zheng, Xin-Qi & Chen, Rui, 2014. "A land use change model: Integrating landscape pattern indexes and Markov-CA," Ecological Modelling, Elsevier, vol. 283(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Zhao & Xiangzheng Deng & Fan Zhang & Zhihui Li & Wenjiao Shi & Zhigang Sun & Xuezhen Zhang, 2022. "Scenario Analysis of Livestock Carrying Capacity Risk in Farmland from the Perspective of Planting and Breeding Balance in Northeast China," Land, MDPI, vol. 11(3), pages 1-13, March.
    2. Zhonghua Cheng & Xiaowen Hu, 2023. "The effects of urbanization and urban sprawl on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1792-1808, February.
    3. Li, Mengxu & Liu, Jianghua & Chen, Yang & Yang, Zhijiu, 2023. "Can sustainable development strategy reduce income inequality in resource-based regions? A natural resource dependence perspective," Resources Policy, Elsevier, vol. 81(C).
    4. Dong Chen & Rongrong Liu & Maoxian Zhou, 2023. "Delineation of Urban Growth Boundary Based on Habitat Quality and Carbon Storage: A Case Study of Weiyuan County in Gansu, China," Land, MDPI, vol. 12(5), pages 1-17, May.
    5. Jinkai Li & Jueying Chen & Heguang Liu, 2021. "Sustainable Agricultural Total Factor Productivity and Its Spatial Relationship with Urbanization in China," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    6. Lin Chu & Tiancheng Sun & Tianwei Wang & Zhaoxia Li & Chongfa Cai, 2020. "Temporal and Spatial Heterogeneity of Soil Erosion and a Quantitative Analysis of its Determinants in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    7. Hongtao Jia & Lei Zhu & Jing Du, 2022. "Fuzzy Comprehensive Evaluation Model of the Farmers’ Sense of Gain in the Provision of Rural Infrastructures: The Case of Tourism-Oriented Rural Areas of China," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    8. Shuangshuang Liu & Qipeng Liao & Mingzhu Xiao & Dengyue Zhao & Chunbo Huang, 2022. "Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    9. Han, Yu & Jia, Haifeng, 2017. "Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China," Ecological Modelling, Elsevier, vol. 353(C), pages 107-116.
    10. Ziyu Jia & Yan Jiao & Wei Zhang & Zheng Chen, 2022. "Rural Tourism Competitiveness and Development Mode, a Case Study from Chinese Township Scale Using Integrated Multi-Source Data," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    11. Yusuyunjiang Mamitimin & Zibibula Simayi & Ayinuer Mamat & Bumairiyemu Maimaiti & Yunfei Ma, 2023. "FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    12. Wu, Zhilong & Dai, Xuhuan & Li, Bo & Hou, Ying, 2021. "Livelihood consequences of the Grain for Green Programme across regional and household scales: A case study in the Loess Plateau," Land Use Policy, Elsevier, vol. 111(C).
    13. Péter Csorba & Krisztina Bánóczki & Zoltán Túri, 2022. "Land Use Changes in Peri-Urban Open Spaces of Small Towns in Eastern Hungary," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    14. Yingzi Chen & Yaqi Hu & Lina Lai, 2022. "Demography-Oriented Urban Spatial Matching of Service Facilities: Case Study of Changchun, China," Land, MDPI, vol. 11(10), pages 1-22, September.
    15. Yu Zhang & Pengcheng Wang & Tianwei Wang & Jingwei Li & Zhaoxia Li & Mingjun Teng & Yunbing Gao, 2020. "Using Vegetation Indices to Characterize Vegetation Cover Change in the Urban Areas of Southern China," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    16. Ruci Wang & Ahmed Derdouri & Yuji Murayama, 2018. "Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    17. Yuzhu Zang & Junjun Zhu & Xu Han & Ligang Lv, 2023. "Dynamics between Population Growth and Construction Land Expansion: Evidence from the Yangtze River Economic Belt of China," Land, MDPI, vol. 12(7), pages 1-20, June.
    18. Yao Qian & Qingyuan Yang & Haozhe Zhang & Kangchuan Su & Huiming Zhang & Xiaochi Qu, 2022. "The Impact of Farming Households’ Livelihood Vulnerability on the Intention of Homestead Agglomeration: The Case of Zhongyi Township, China," Land, MDPI, vol. 11(8), pages 1-20, August.
    19. Yuhan Yu & Mengmeng Yu & Lu Lin & Jiaxin Chen & Dongjie Li & Wenting Zhang & Kai Cao, 2019. "National Green GDP Assessment and Prediction for China Based on a CA-Markov Land Use Simulation Model," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    20. Yanan Li & Linghua Duo & Ming Zhang & Zhenhua Wu & Yanjun Guan, 2021. "Assessment and Estimation of the Spatial and Temporal Evolution of Landscape Patterns and Their Impact on Habitat Quality in Nanchang, China," Land, MDPI, vol. 10(10), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:4:p:841-:d:1117158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.