IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i12p1350-d697132.html
   My bibliography  Save this article

Multidimensional Food Security Nexus in Drylands under the Slow Onset Effects of Climate Change

Author

Listed:
  • Ilan Stavi

    (Dead Sea and Arava Science Center, Yotvata 88820, Israel
    Eilat Campus, Ben-Gurion University of the Negev, Eilat 88100, Israel)

  • Anastasia Paschalidou

    (Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, 68200 Orestiada, Greece)

  • Apostolos P. Kyriazopoulos

    (Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, 68200 Orestiada, Greece)

  • Rares Halbac-Cotoara-Zamfir

    (Department of Civil Engineering, Politehnica University of Timisoara, 300041 Timisoara, Romania)

  • Si Mokrane Siad

    (Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Via Torino 155, 30170 Venice, Italy
    International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), Mediterranean Agronomic Institute of Bari, Via Ceglie 9, 70010 Valenzano, Italy
    Department of Environmental Engineering, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy)

  • Malgorzata Suska-Malawska

    (Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 00-927 Warsaw, Poland
    International Platform for Dryland Research and Education, Tottori University, Tottori 680-8550, Japan)

  • Dragisa Savic

    (Faculty of Technology in Leskovac, University of Niš, 18000 Niš, Serbia)

  • Joana Roque de Pinho

    (Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Estudos Internacionais, 2649-026 Lisboa, Portugal)

  • Lisa Thalheimer

    (Center for Policy Research on Energy and the Environment, Princeton University, Princeton, NJ 08544, USA)

  • David Samuel Williams

    (Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany)

  • Nurit Hashimshony-Yaffe

    (School of Government and Society, The Academic College of Tel Aviv-Yaffo, Yaffo 6818211, Israel)

  • Kees van der Geest

    (Institute for Environment and Human Security (UNU-EHS), United Nations University, 53113 Bonn, Germany)

  • Claudia M. d. S. Cordovil

    (Centro de Estudos Florestais, Instituto Superior de Agronomia (ISA-UL), Universidade de Lisboa, 1349-017 Lisbon, Portugal)

  • Andrej Ficko

    (Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia)

Abstract

Hyperarid, arid, semiarid, and dry subhumid areas cover approximately 41% of the global land area. The human population in drylands, currently estimated at 2.7 billion, faces limited access to sufficient, affordable, and nutritious food. We discuss the interlinkages among water security, environmental security, energy security, economic security, health security, and food security governance, and how they affect food security in drylands. Reliable and adequate water supply, and the prevention of water contamination, increase the potential for ample food, fodder, and fiber production. Protecting woodlands and rangelands increases food security by buffering the slow onset effects of climate change, including biodiversity loss, desertification, salinization, and land degradation. The protection of natural lands is expected to decrease environmental contamination, and simultaneously, reduce the transfer of diseases from wildlife to humans. Biofuel production and hydroelectric power plants increase energy security but generate land-use conflicts, deforestation, and ecosystem degradation. Economic security generally positively correlates with food security. However, economic growth often degrades the environment, changes tenure rights over natural resources, and stimulates migration to urban areas, resulting in lower food and health security. Moreover, civil unrest, political instability, and armed conflicts disrupt local economies in drylands. Maintaining food security is crucial for health security; conversely, malnourished populations and unresponsive health systems decrease economic security, and adversely affect environmental, energy, and food security. Climate change is expected to deteriorate health security by spreading vector-borne diseases. Effective governance and timely interventions can substantially shorten periods of food insecurity, lower their intensities, and accelerate recovery from inevitable crises, and are therefore crucial in preventing humanitarian crises. Since global drylands population will nearly double by 2050, and since drylands are among the most susceptible areas to climate change, integrated multi-hazard approaches to food security are needed.

Suggested Citation

  • Ilan Stavi & Anastasia Paschalidou & Apostolos P. Kyriazopoulos & Rares Halbac-Cotoara-Zamfir & Si Mokrane Siad & Malgorzata Suska-Malawska & Dragisa Savic & Joana Roque de Pinho & Lisa Thalheimer & D, 2021. "Multidimensional Food Security Nexus in Drylands under the Slow Onset Effects of Climate Change," Land, MDPI, vol. 10(12), pages 1-14, December.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1350-:d:697132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/12/1350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/12/1350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gargule A. Achiba, 2019. "Navigating Contested Winds: Development Visions and Anti-Politics of Wind Energy in Northern Kenya," Land, MDPI, vol. 8(1), pages 1-29, January.
    2. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(S1), pages 40-51.
    3. Michael J. Puma & So Young Chon & Kaoru Kakinuma & Matti Kummu & Raya Muttarak & Richard Seager & Yoshihide Wada, 2018. "A developing food crisis and potential refugee movements," Nature Sustainability, Nature, vol. 1(8), pages 380-382, August.
    4. Stephane Hallegatte & Julie Rozenberg, 2017. "Climate change through a poverty lens," Nature Climate Change, Nature, vol. 7(4), pages 250-256, April.
    5. Ravi, Sujith & Macknick, Jordan & Lobell, David & Field, Christopher & Ganesan, Karthik & Jain, Rishabh & Elchinger, Michael & Stoltenberg, Blaise, 2016. "Colocation opportunities for large solar infrastructures and agriculture in drylands," Applied Energy, Elsevier, vol. 165(C), pages 383-392.
    6. Raimund Bleischwitz & Catalina Spataru & Stacy D. VanDeveer & Michael Obersteiner & Ester Voet & Corey Johnson & Philip Andrews-Speed & Tim Boersma & Holger Hoff & Detlef P. Vuuren, 2018. "Resource nexus perspectives towards the United Nations Sustainable Development Goals," Nature Sustainability, Nature, vol. 1(12), pages 737-743, December.
    7. Inge E. M. Graaf & Tom Gleeson & L. P. H. (Rens) van Beek & Edwin H. Sutanudjaja & Marc F. P. Bierkens, 2019. "Environmental flow limits to global groundwater pumping," Nature, Nature, vol. 574(7776), pages 90-94, October.
    8. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
    9. de Faria, Felipe A.M. & Davis, Alex & Severnini, Edson & Jaramillo, Paulina, 2017. "The local socio-economic impacts of large hydropower plant development in a developing country," Energy Economics, Elsevier, vol. 67(C), pages 533-544.
    10. Escobar, José C. & Lora, Electo S. & Venturini, Osvaldo J. & Yáñez, Edgar E. & Castillo, Edgar F. & Almazan, Oscar, 2009. "Biofuels: Environment, technology and food security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1275-1287, August.
    11. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Author Correction: Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(8), pages 750-750, August.
    12. Caccavale, Oscar Maria & Giuffrida, Valerio, 2020. "The Proteus composite index: Towards a better metric for global food security," World Development, Elsevier, vol. 126(C).
    13. Kazimierczuk, Agnieszka H., 2019. "Wind energy in Kenya: A status and policy framework review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 434-445.
    14. Lars Ludolph & Barbora Šedová, 2021. "Global food prices, local weather and migration in Sub-Saharan Africa," CEPA Discussion Papers 26, Center for Economic Policy Analysis.
    15. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    16. Baslyd B. Nara & Monica Lengoiboni & Jaap Zevenbergen, 2020. "Implications of Customary Land Rights Inequalities for Food Security: A Study of Smallholder Farmers in Northwest Ghana," Land, MDPI, vol. 9(6), pages 1-20, June.
    17. Ana Iglesias & Luis Garrote & Francisco Flores & Marta Moneo, 2007. "Challenges to Manage the Risk of Water Scarcity and Climate Change in the Mediterranean," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 775-788, May.
    18. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(Supplemen), pages 40-51, January.
    19. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    20. Joachim von Braun & Kaosar Afsana & Louise O. Fresco & Mohamed Hassan, 2021. "Food systems: seven priorities to end hunger and protect the planet," Nature, Nature, vol. 597(7874), pages 28-30, September.
    21. Abdelrahman Azzuni & Christian Breyer, 2018. "Definitions and dimensions of energy security: a literature review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(1), January.
    22. Ludolph, Lars & Sedova, Barbora, 2021. "Global food prices, local weather and migration in Sub-Saharan Africa," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242334, Verein für Socialpolitik / German Economic Association.
    23. I. Stavi, 2012. "The potential use of biochar in reclaiming degraded rangelands," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 55(5), pages 657-665, September.
    24. Franziska Gaupp & Jim Hall & Stefan Hochrainer-Stigler & Simon Dadson, 2020. "Changing risks of simultaneous global breadbasket failure," Nature Climate Change, Nature, vol. 10(1), pages 54-57, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prof. Hyacinth Ichoku & Dr. Ihuoma Anthony & Dr. Tosin Olushola & Apinran Martins, 2023. "Analyzing the Evolving Relationships among Climate Change, Insecurity, and Food Price Inflation in Nigeria: NARDL Approach," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(11), pages 100-124, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Sika Gadzanku & Heather Mirletz & Nathan Lee & Jennifer Daw & Adam Warren, 2021. "Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    3. Andreia Marques Postal & Gabriela Benatti & Mar Palmeros Parada & Lotte Asveld & Patrícia Osseweijer & José Maria F. J. Da Silveira, 2020. "The Role of Participation in the Responsible Innovation Framework for Biofuels Projects: Can It Be Assessed?," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    4. Budzyński, Wojciech Stefan & Jankowski, Krzysztof Józef & Jarocki, Marcin, 2015. "An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland," Energy, Elsevier, vol. 90(P2), pages 1272-1279.
    5. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    6. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    9. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    10. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    11. Vik, Jostein, 2020. "The agricultural policy trilemma: On the wicked nature of agricultural policy making," Land Use Policy, Elsevier, vol. 99(C).
    12. Kuik, Onno & Zhou, Fujin & Ciullo, Alessio & Brusselaers, Jan, 2022. "How vulnerable is Europe to severe climate-related natural disasters abroad? A dynamic CGE analysis of the international financial and economic impacts of a large hurricane in the southern USA," Conference papers 333438, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    14. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    15. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    16. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    17. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2012. "Der Markt für Bioenergie 2012," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(Supplemen), pages 1-20, February.
    18. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2011. "Der Markt für Bioenergie 2012," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 61.
    19. Thaler, S. & Zessner, M. & Weigl, M. & Rechberger, H. & Schilling, K. & Kroiss, H., 2015. "Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria," Agricultural Systems, Elsevier, vol. 136(C), pages 14-29.
    20. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1350-:d:697132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.