IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i12p1298-d688212.html
   My bibliography  Save this article

Identification of the Key Influencing Factors of Urban Rail Transit Station Resilience against Disasters Caused by Rainstorms

Author

Listed:
  • Liudan Jiao

    (School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Dongrong Li

    (School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Yu Zhang

    (School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Yinghan Zhu

    (School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Xiaosen Huo

    (School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Ya Wu

    (College of Resources and Environment, Southwest University, Chongqing 400715, China)

Abstract

Improving the ability of the urban rail transit system to cope with rainstorm disasters is of great significance to ensure the safe travel of residents. In this study, a model of the hierarchical relationship of the influencing factors is constructed from the resilience perspective, in order to research the action mechanisms of the influencing factors of urban rail transit stations susceptible to rainstorm disaster. Firstly, the concept of resilience and the three attributes (resistance, recovery, and adaptability) are interpreted. Based on the relevant literature, 20 influencing factors are discerned from the 3 attributes of the resilience of urban rail transit stations. Subsequently, an interpretative structural model (ISM) is utilised to analyse the hierarchical relationship among the influencing factors. The key influencing factors of station resilience are screened out using social network analysis (SNA). Combined with ISM and SNA for analysis, the result shows that the key influencing factors are: “Flood prevention monitoring capability”; “Water blocking capacity”; “Flood prevention capital investment”; “Personnel cooperation ability”; “Emergency plan for flood prevention”; “Flood prevention training and drill”; “Publicity and education of flood prevention knowledge”; and “Regional economic development level”. Therefore, according to the critical influencing factors and the action path of the resilience influencing factors, station managers can carry out corresponding flood control work, providing a reference for enhancing the resilience of urban rail transit stations.

Suggested Citation

  • Liudan Jiao & Dongrong Li & Yu Zhang & Yinghan Zhu & Xiaosen Huo & Ya Wu, 2021. "Identification of the Key Influencing Factors of Urban Rail Transit Station Resilience against Disasters Caused by Rainstorms," Land, MDPI, vol. 10(12), pages 1-21, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1298-:d:688212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/12/1298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/12/1298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Nshimiyimana, Jean Pierre, 2021. "Evaluating strategies for renewable energy development in Rwanda: An integrated SWOT – ISM analysis," Renewable Energy, Elsevier, vol. 176(C), pages 402-414.
    2. Edwar Forero-Ortiz & Eduardo Martínez-Gomariz & Manuel Cañas Porcuna & Luca Locatelli & Beniamino Russo, 2020. "Flood Risk Assessment in an Underground Railway System under the Impact of Climate Change—A Case Study of the Barcelona Metro," Sustainability, MDPI, vol. 12(13), pages 1-26, June.
    3. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    4. Sohouenou, Philippe Y.R. & Neves, Luis A.C., 2021. "Assessing the effects of link-repair sequences on road network resilience," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
    5. Leng, Zhihui & Sun, Han & Cheng, Jinhua & Wang, Hai & Yao, Zhen, 2021. "China's rare earth industry technological innovation structure and driving factors: A social network analysis based on patents," Resources Policy, Elsevier, vol. 73(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yun-fei Zhao & Jian-min Cai & Lan Tang & Hai-bo Li & Shi-yu Hu & Hui-ge Xing, 2024. "Hierarchical and networked analysis of resilience factors in mountain communities in Southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 1519-1556, January.
    2. Chenlei Guan & Damin Dong & Feng Shen & Xin Gao & Linyan Chen, 2022. "Hierarchical Structure Model of Safety Risk Factors in New Coastal Towns: A Systematic Analysis Using the DEMATEL-ISM-SNA Method," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    3. Hui Xu & Shuxiu Li & Yongtao Tan & Bin Xing, 2022. "Comprehensive Resilience Assessment of Complex Urban Public Spaces: A Perspective of Promoting Sustainability," Land, MDPI, vol. 11(6), pages 1-23, June.
    4. Hu, Jie & Wen, Weiping & Zhai, Changhai & Pei, Shunshun, 2024. "Post-earthquake functionality assessment for urban subway systems: Incorporating the combined effects of seismic performance of structural and non-structural systems and functional interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Liudan Jiao & Fenglian Luo & Fengyan Wu & Yu Zhang & Xiaosen Huo & Ya Wu, 2022. "Exploring the Interactive Coercing Relationship between Urban Rail Transit and the Ecological Environment," Land, MDPI, vol. 11(6), pages 1-20, June.
    6. Nao Sugiki & Shogo Nagao & Fumitaka Kurauchi & Mustafa Mutahari & Kojiro Matsuo, 2021. "Social Dynamics Simulation Using a Multi-Layer Network," Sustainability, MDPI, vol. 13(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    2. Yaxin Fan & Xinyan Zhu & Bing She & Wei Guo & Tao Guo, 2018. "Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-23, April.
    3. Qian Ye & Hyun Kim, 2019. "Assessing network vulnerability of heavy rail systems with the impact of partial node failures," Transportation, Springer, vol. 46(5), pages 1591-1614, October.
    4. Zhang, Lin & Lu, Jian & Fu, Bai-bai & Li, Shu-bin, 2019. "A cascading failures model of weighted bus transit route network under route failure perspective considering link prediction effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1315-1330.
    5. Naim Ahmad & Ayman Qahmash, 2021. "SmartISM: Implementation and Assessment of Interpretive Structural Modeling," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    6. Zhenfeng Liu & Xinyue Xiang & Jian Feng, 2024. "Tracing evolutionary trajectory of charging technologies in electric vehicles: patent citation network analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 12789-12813, May.
    7. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    8. Liudan Jiao & Liyin Shen & Chenyang Shuai & Yongtao Tan & Bei He, 2017. "Measuring Crowdedness between Adjacent Stations in an Urban Metro System: a Chinese Case Study," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
    9. Di, Jinghan & Wen, Zongguo & Jiang, Meihui & Miatto, Alessio, 2022. "Patterns and features of embodied environmental flow networks in the international trade of metal resources: A study of aluminum," Resources Policy, Elsevier, vol. 77(C).
    10. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    11. Huo, Tengfei & Cong, Xiaobo & Cheng, Cong & Cai, Weiguang & Zuo, Jian, 2023. "What is the driving mechanism for the carbon emissions in the building sector? An integrated DEMATEL-ISM model," Energy, Elsevier, vol. 274(C).
    12. Hongpeng Guo & Wenkai Zhao & Chulin Pan & Guijie Qiu & Shuang Xu & Shun Liu, 2022. "Study on the Influencing Factors of Farmers’ Adoption of Conservation Tillage Technology in Black Soil Region in China: A Logistic-ISM Model Approach," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    13. Yun-fei Zhao & Jian-min Cai & Lan Tang & Hai-bo Li & Shi-yu Hu & Hui-ge Xing, 2024. "Hierarchical and networked analysis of resilience factors in mountain communities in Southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 1519-1556, January.
    14. Huiping Wang & Qi Ge, 2022. "Analysis of the Spatial Association Network of PM 2.5 and Its Influencing Factors in China," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    15. Hui Xu & Liudan Jiao & Shulin Chen & Milan Deng & Ningxin Shen, 2018. "An Innovative Approach to Determining High-Risk Nodes in a Complex Urban Rail Transit Station: A Perspective of Promoting Urban Sustainability," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    16. Liu, Rick Zhaoju & Shalaby, Amer, 2024. "Impacts of public transit delays and disruptions on equity seeking groups in Toronto – A time-expanded graph approach," Journal of Transport Geography, Elsevier, vol. 114(C).
    17. Zhang, Jianhua & Wang, Meng, 2019. "Transportation functionality vulnerability of urban rail transit networks based on movingblock: The case of Nanjing metro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    18. Wenwei Lian & Bingyan Wang & Tianming Gao & Xiaoyan Sun & Yan Zhang & Hongmei Duan, 2022. "Coordinated Development of Renewable Energy: Empirical Evidence from China," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    19. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    20. Hong, Liu & Zhong, Xin & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2019. "Vulnerability analysis of public transit systems from the perspective of urban residential communities," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 143-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1298-:d:688212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.