IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11122-d907677.html
   My bibliography  Save this article

Coordinated Development of Renewable Energy: Empirical Evidence from China

Author

Listed:
  • Wenwei Lian

    (School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
    Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
    Research Center for Strategy of Global Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China)

  • Bingyan Wang

    (School of Business, Hebei University of Economics and Business, Shijiazhuang 050061, China)

  • Tianming Gao

    (Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
    Research Center for Strategy of Global Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China)

  • Xiaoyan Sun

    (School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
    Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
    Research Center for Strategy of Global Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China)

  • Yan Zhang

    (Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
    Research Center for Strategy of Global Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China)

  • Hongmei Duan

    (School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
    Chinese Academy of International Trade and Economic Cooperation, Beijing 100710, China)

Abstract

The utilization of renewable energy (RE) is a meaningful way to realize the low-carbon transformation of energy systems. However, due to the imbalance of resources, economy, technology, society, and environment among regions, the coordinated development of regional RE may be restricted by different factors, which brings challenges to the formulation of relevant development policies. This paper focuses on the development of RE in 30 provinces in China from 2011 to 2019. It uses the AHP-EM integrated evaluation model to evaluate the constructed multilayer indicator system for the comprehensive development of RE. The characteristics of the coupling and coordination relationship between indicators are explored, and the critical driving factors affecting the coordinated development and change in RE in different regions are quantitatively identified through the logarithmic mean Divisia index method. The results show that the comprehensive development level of RE in each province is relatively low, and the relatively high-level areas gradually move eastward in terms of spatial distribution. The degree of coupling and coordination between indicators is still in a low-level coupling stage, and RE in each region has not achieved coordinated development. In addition, the comprehensive development of regional RE is consistent with the spatial evolution characteristics of the degree of coordination among indicators, emphasizing the importance of coordinated development among indicators for RE. These findings will provide broader insights for improving the comprehensive development level of regional RE and formulating differentiated policies.

Suggested Citation

  • Wenwei Lian & Bingyan Wang & Tianming Gao & Xiaoyan Sun & Yan Zhang & Hongmei Duan, 2022. "Coordinated Development of Renewable Energy: Empirical Evidence from China," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11122-:d:907677
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2018. "Future Trajectories of Renewable Energy Consumption in the European Union," Resources, MDPI, vol. 7(1), pages 1-13, February.
    2. Golombek, Rolf & Lind, Arne & Ringkjøb, Hans-Kristian & Seljom, Pernille, 2022. "The role of transmission and energy storage in European decarbonization towards 2050," Energy, Elsevier, vol. 239(PC).
    3. Clausen, Laura Tolnov & Rudolph, David, 2020. "Renewable energy for sustainable rural development: Synergies and mismatches," Energy Policy, Elsevier, vol. 138(C).
    4. Bistline, John E., 2017. "Economic and technical challenges of flexible operations under large-scale variable renewable deployment," Energy Economics, Elsevier, vol. 64(C), pages 363-372.
    5. Cheng, Yuanyuan & Yao, Xin, 2021. "Carbon intensity reduction assessment of renewable energy technology innovation in China: A panel data model with cross-section dependence and slope heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    7. Ji, Qiang & Zhang, Dayong, 2019. "How much does financial development contribute to renewable energy growth and upgrading of energy structure in China?," Energy Policy, Elsevier, vol. 128(C), pages 114-124.
    8. Bai, Caiquan & Feng, Chen & Du, Kerui & Wang, Yuansheng & Gong, Yuan, 2020. "Understanding spatial-temporal evolution of renewable energy technology innovation in China: Evidence from convergence analysis," Energy Policy, Elsevier, vol. 143(C).
    9. Sadorsky, Perry, 2009. "Renewable energy consumption and income in emerging economies," Energy Policy, Elsevier, vol. 37(10), pages 4021-4028, October.
    10. Shawn Olson Hazboun & Hilary Schaffer Boudet, 2020. "Public Preferences in a Shifting Energy Future: Comparing Public Views of Eight Energy Sources in North America’s Pacific Northwest," Energies, MDPI, vol. 13(8), pages 1-21, April.
    11. Zhang, Pan, 2019. "Do energy intensity targets matter for wind energy development? Identifying their heterogeneous effects in Chinese provinces with different wind resources," Renewable Energy, Elsevier, vol. 139(C), pages 968-975.
    12. Gaafar Muhammed & Neyre Tekbiyik-Ersoy, 2020. "Development of Renewable Energy in China, USA, and Brazil: A Comparative Study on Renewable Energy Policies," Sustainability, MDPI, vol. 12(21), pages 1-29, November.
    13. Wang, Ying & Zhang, Dayong & Ji, Qiang & Shi, Xunpeng, 2020. "Regional renewable energy development in China: A multidimensional assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    14. Wiesław Musiał & Monika Zioło & Lidia Luty & Kamila Musiał, 2021. "Energy Policy of European Union Member States in the Context of Renewable Energy Sources Development," Energies, MDPI, vol. 14(10), pages 1-20, May.
    15. Iuliana Matei, 2017. "Is there a Link between Renewable Energy Consumption and Economic Growth? A Dynamic Panel Investigation for the OECD Countries," Revue d'économie politique, Dalloz, vol. 127(6), pages 985-1012.
    16. Meleddu, Marta & Pulina, Manuela, 2018. "Public spending on renewable energy in Italian regions," Renewable Energy, Elsevier, vol. 115(C), pages 1086-1098.
    17. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Nshimiyimana, Jean Pierre, 2021. "Evaluating strategies for renewable energy development in Rwanda: An integrated SWOT – ISM analysis," Renewable Energy, Elsevier, vol. 176(C), pages 402-414.
    18. Xiaoyan Sun & Wenwei Lian & Hongmei Duan & Anjian Wang, 2021. "Factors Affecting Wind Power Efficiency: Evidence from Provincial-Level Data in China," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    19. Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Zhang, Sufang & Andrews-Speed, Philip & Zhao, Xiaoli, 2013. "Political and institutional analysis of the successes and failures of China’s wind power policy," Energy Policy, Elsevier, vol. 56(C), pages 331-340.
    21. Zhang, Chenxi & Zhou, Dequn & Wang, Qunwei & Ding, Hao & Zhao, Siqi, 2022. "Will fiscal decentralization stimulate renewable energy development? Evidence from China," Energy Policy, Elsevier, vol. 164(C).
    22. Feng Dong & Yuling Pan, 2020. "Evolution of Renewable Energy in BRI Countries: A Combined Econometric and Decomposition Approach," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    23. Álvaro González Lorente & Montserrat Hernández López & Francisco Javier Martín Álvarez & Javier Mendoza Jiménez, 2020. "Differences in Electricity Generation from Renewable Sources from Similar Environmental Conditions: The Cases of Spain and Cuba," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    24. Zheng, Shuhong & Yang, Juan & Yu, Shiwei, 2021. "How renewable energy technological innovation promotes renewable power generation: Evidence from China's provincial panel data," Renewable Energy, Elsevier, vol. 177(C), pages 1394-1407.
    25. Xuesong Sun & Zaisheng Zhang, 2021. "Coupling and Coordination Level of the Population, Land, Economy, Ecology and Society in the Process of Urbanization: Measurement and Spatial Differentiation," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    26. Yu, Shiwei & Zheng, Yali & Li, Longxi, 2019. "A comprehensive evaluation of the development and utilization of China's regional renewable energy," Energy Policy, Elsevier, vol. 127(C), pages 73-86.
    27. Khezri, Mohsen & Heshmati, Almas & Khodaei, Mehdi, 2021. "The role of R&D in the effectiveness of renewable energy determinants: A spatial econometric analysis," Energy Economics, Elsevier, vol. 99(C).
    28. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    29. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.
    30. Vural, Gulfer, 2021. "Analyzing the impacts of economic growth, pollution, technological innovation and trade on renewable energy production in selected Latin American countries," Renewable Energy, Elsevier, vol. 171(C), pages 210-216.
    31. Piotr Bórawski & Rafał Wyszomierski & Aneta Bełdycka-Bórawska & Bartosz Mickiewicz & Beata Kalinowska & James W. Dunn & Tomasz Rokicki, 2022. "Development of Renewable Energy Sources in the European Union in the Context of Sustainable Development Policy," Energies, MDPI, vol. 15(4), pages 1-20, February.
    32. Khribich, Abir & Kacem, Rami H. & Dakhlaoui, Ahlem, 2021. "Causality nexus of renewable energy consumption and social development: Evidence from high-income countries," Renewable Energy, Elsevier, vol. 169(C), pages 14-22.
    33. Grzegorz Zimon & Dominik Zimon, 2020. "The Impact of Purchasing Group on the Profitability of Companies Operating in the Renewable Energy Sector—The Case of Poland," Energies, MDPI, vol. 13(24), pages 1-15, December.
    34. Ashiwani Yadav & Nitai Pal & Jagannath Patra & Monika Yadav, 2020. "Strategic planning and challenges to the deployment of renewable energy technologies in the world scenario: its impact on global sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 297-315, January.
    35. Dongri Han & Tuochen Li & Shaosong Feng & Ziyi Shi, 2020. "Does Renewable Energy Consumption Successfully Promote the Green Transformation of China’s Industry?," Energies, MDPI, vol. 13(1), pages 1-14, January.
    36. Bamati, Narges & Raoofi, Ali, 2020. "Development level and the impact of technological factor on renewable energy production," Renewable Energy, Elsevier, vol. 151(C), pages 946-955.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Ekonomou & Angeliki N. Menegaki, 2023. "China in the Renewable Energy Era: What Has Been Done and What Remains to Be Done," Energies, MDPI, vol. 16(18), pages 1-21, September.
    2. Yue Jiang & Yufang Wang & Rui Wang, 2022. "Coupling and Coordination Relationship between Economic and Ecologic-Environmental Developments in China’s Key State-Owned Forest Areas," Sustainability, MDPI, vol. 14(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minli Yu & Fu-Sheng Tsai & Hui Jin & Hejie Zhang, 2022. "Digital finance and renewable energy consumption: evidence from China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-19, December.
    2. Hu, Xing & Guo, Yingying & Zheng, Yali & Liu, Lan-cui & Yu, Shiwei, 2022. "Which types of policies better promote the development of renewable energy? Evidence from China's provincial data," Renewable Energy, Elsevier, vol. 198(C), pages 1373-1382.
    3. Xu, Jie & Lv, Tao & Hou, Xiaoran & Deng, Xu & Li, Na & Liu, Feng, 2022. "Spatiotemporal characteristics and influencing factors of renewable energy production in China: A spatial econometric analysis," Energy Economics, Elsevier, vol. 116(C).
    4. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2020. "Do renewable energy production spillovers matter in the EU?," Renewable Energy, Elsevier, vol. 150(C), pages 786-796.
    5. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.
    6. Muhammad Shahid Mastoi & Hafiz Mudassir Munir & Shenxian Zhuang & Mannan Hassan & Muhammad Usman & Ahmad Alahmadi & Basem Alamri, 2022. "A Comprehensive Analysis of the Power Demand–Supply Situation, Electricity Usage Patterns, and the Recent Development of Renewable Energy in China," Sustainability, MDPI, vol. 14(6), pages 1-34, March.
    7. Lai, Aolin & Wang, Qunwei, 2024. "How coal de-capacity policy affects renewable energy development efficiency? Evidence from China," Energy, Elsevier, vol. 286(C).
    8. Chu, Lan Khanh & Ghosh, Sudeshna & Doğan, Buhari & Nguyen, Nam Hoai & Shahbaz, Muhammad, 2023. "Energy security as new determinant of renewable energy: The role of economic complexity in top energy users," Energy, Elsevier, vol. 263(PC).
    9. Ge, Tao & Ding, Ziqi & Lu, Xiaoya & Yang, Keling, 2023. "Spillover effect of energy intensity targets on renewable energy consumption in China: A spatial econometric approach," Renewable Energy, Elsevier, vol. 217(C).
    10. Li Ma & Die Xu, 2021. "Toward Renewable Energy in China: Revisiting Driving Factors of Chinese Wind Power Generation Development and Spatial Distribution," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    11. Yang, Guanglei & Zhang, Guoxing & Cao, Dongqin & Zha, Donglan & Gao, Xiulin & Su, Bin, 2024. "China's provincial-level sustainable energy transition requires accelerating renewable energy technological innovation," Energy, Elsevier, vol. 288(C).
    12. Ghazouani, Tarek, 2022. "Dynamic impact of globalization on renewable energy consumption: Non-parametric modelling evidence," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    13. Qin, Yong & Xu, Zeshui & Wang, Xinxin & Škare, Marinko, 2023. "The effects of financial institutions on the green energy transition: A cross-sectional panel study," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 524-542.
    14. Nan, Shijing & Huo, Yuchen & Lee, Chien-Chiang, 2023. "Assessing the role of globalization on renewable energy consumption: New evidence from a spatial econometric analysis," Renewable Energy, Elsevier, vol. 215(C).
    15. Marius Dalian Doran & Maria Magdalena Poenaru & Alexandra Lucia Zaharia & Sorana Vătavu & Oana Ramona Lobonț, 2022. "Fiscal Policy, Growth, Financial Development and Renewable Energy in Romania: An Autoregressive Distributed Lag Model with Evidence for Growth Hypothesis," Energies, MDPI, vol. 16(1), pages 1-18, December.
    16. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    17. Daniela Nicoleta Sahlian & Adriana Florina Popa & Raluca Florentina Creţu, 2021. "Does the Increase in Renewable Energy Influence GDP Growth? An EU-28 Analysis," Energies, MDPI, vol. 14(16), pages 1-16, August.
    18. Akan, Taner & Gündüz, Halil İbrahim & Emirmahmutoğlu, Furkan & Işık, Ali Haydar, 2023. "Disaggregating renewable energy-growth nexus: W-ARDL and W-Toda-Yamamoto approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
    20. Zheng, Shuhong & Yang, Juan & Yu, Shiwei, 2021. "How renewable energy technological innovation promotes renewable power generation: Evidence from China's provincial panel data," Renewable Energy, Elsevier, vol. 177(C), pages 1394-1407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11122-:d:907677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.