IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v18y2025i9p473-d1731967.html
   My bibliography  Save this article

From Pandemic Shock to Sustainable Recovery: Data-Driven Insights into Global Eco-Productivity Trends During the COVID-19 Era

Author

Listed:
  • Ümit Sağlam

    (Department of Management and Supply Chain, College of Business and Technology, East Tennessee State University, Johnson City, TN 37614, USA)

Abstract

This study evaluates the eco-efficiency and eco-productivity of 141 countries using data-driven analytical frameworks over the period 2018–2023, covering the pre-COVID, COVID, and post-COVID phases. We employ an input-oriented Slack-Based Measure Data Envelopment Analysis (SBM-DEA) under variable returns to scale (VRS), combined with the Malmquist Productivity Index (MPI), to assess both static and dynamic performance. The analysis incorporates three inputs—labor force, gross fixed capital formation, and energy consumption—one desirable output (gross domestic product, GDP), and one undesirable output (CO 2 emissions). Eco-efficiency (the joint performance of energy and carbon efficiency) and eco-productivity (labor and capital efficiency) are evaluated to capture complementary dimensions of sustainable performance. The results reveal significant but temporary gains in eco-efficiency during the peak pandemic years (2020–2021), followed by widespread post-crisis reversals, particularly in labor productivity, energy efficiency, and CO 2 emission efficiency. These reversals were often linked to institutional and structural barriers, such as rigid labor markets and outdated infrastructure, which limited the translation of technological progress into operational efficiency. The MPI decomposition indicates that, while technological change improved in many countries, efficiency change declined, leading to overall stagnation or regression in eco-productivity for most economies. Regression analysis shows that targeted policy stringency in 2022 was positively associated with eco-productivity, whereas broader restrictions in 2020–2021 were less effective. We conclude with differentiated policy recommendations, emphasizing green technology transfer and institutional capacity building for lower-income countries, and the integration of carbon pricing and innovation incentives for high-income economies.

Suggested Citation

  • Ümit Sağlam, 2025. "From Pandemic Shock to Sustainable Recovery: Data-Driven Insights into Global Eco-Productivity Trends During the COVID-19 Era," JRFM, MDPI, vol. 18(9), pages 1-43, August.
  • Handle: RePEc:gam:jjrfmx:v:18:y:2025:i:9:p:473-:d:1731967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/18/9/473/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/18/9/473/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Hale & Noam Angrist & Rafael Goldszmidt & Beatriz Kira & Anna Petherick & Toby Phillips & Samuel Webster & Emily Cameron-Blake & Laura Hallas & Saptarshi Majumdar & Helen Tatlow, 2021. "A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)," Nature Human Behaviour, Nature, vol. 5(4), pages 529-538, April.
    2. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    3. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    4. Sueyoshi, Toshiyuki & Mo, Fei & Wang, Derek D., 2022. "Sustainable development of countries all over the world and the impact of renewable energy," Renewable Energy, Elsevier, vol. 184(C), pages 320-331.
    5. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
    6. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    7. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
    2. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    3. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    4. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    5. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    6. Tony Flegg & David O. Allen, 2006. "Does it matter How We Measure Congestion?," Working Papers 0614, Department of Accounting, Economics and Finance, Bristol Business School, University of the West of England, Bristol.
    7. Zhou, Lin & Fan, Jianshuang & Hu, Mingzhi & Yu, Xiaofen, 2024. "Clean air policy and green total factor productivity: Evidence from Chinese prefecture-level cities," Energy Economics, Elsevier, vol. 133(C).
    8. Ying Li & Tai‐Yu Lin & Yung‐ho Chiu & Shu‐Ning Lin & Tzu‐Han Chang, 2021. "Impact of alliances and delay rate on airline performance," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(6), pages 1607-1618, September.
    9. Shuangjie Li & Hongyu Diao & Liming Wang & Chunqi Li, 2021. "Energy Efficiency Measurement: A VO TFEE Approach and Its Application," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    10. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Shadman, Foroogh, 2014. "Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist–Luenberger Index measurement," Energy Policy, Elsevier, vol. 68(C), pages 132-145.
    11. Long, Ruyin & Ren, Yuan & Wu, Meifen, 2022. "Differential decomposition of total-factor energy efficiency in Chinese coal mining cities considering environmental constraints: A dynamic and static perspective," Resources Policy, Elsevier, vol. 79(C).
    12. Puertas, Rosa & Guaita-Martinez, José M. & Carracedo, Patricia & Ribeiro-Soriano, Domingo, 2022. "Analysis of European environmental policies: Improving decision making through eco-efficiency," Technology in Society, Elsevier, vol. 70(C).
    13. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    14. Jessica Suarez Campoli & Tatiana Kimura Kodama & Marcelo Seido Nagano & Heloisa Lee Burnquist, 2025. "Advancing Circular Economy: G20 Nations’ Path Towards 12th Sustainable Development Goal," Circular Economy and Sustainability, Springer, vol. 5(1), pages 1-24, February.
    15. Mengchao Yao & Yihua Zhang, 2021. "Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    16. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    17. Hirofumi Fukuyama & Mike Tsionas & Yong Tan, 2024. "Incorporating causal modeling into data envelopment analysis for performance evaluation," Annals of Operations Research, Springer, vol. 342(3), pages 1865-1904, November.
    18. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    19. Liang Chun Lu & Yung-ho Chiu & Shih-Yung Chiu & Tzu-Han Chang, 2022. "Do Forests help environmental development of Cities in China?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6602-6629, May.
    20. Huan YAN & Xiaojing LI & Shuang MENG, 2023. "Global Value Chain Participation and Sustainable Growth: Evidence from China," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 5-20, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:9:p:473-:d:1731967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.