IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14482-d963715.html
   My bibliography  Save this article

Carbon Reduction of the Three-Year Air Pollution Control Plan under the LEAP Model Using a GREAT Tool in Panzhihua, China

Author

Listed:
  • Junjie Wang

    (Sichuan Academy of Environmental Sciences, Chengdu 620041, China)

  • Yi Zhang

    (Sichuan Academy of Environmental Sciences, Chengdu 620041, China)

  • Linde Mei

    (Sichuan Academy of Environmental Sciences, Chengdu 620041, China)

  • Xuemei Xu

    (Sichuan Academy of Environmental Sciences, Chengdu 620041, China)

  • Hanmei Yin

    (Sichuan Academy of Environmental Sciences, Chengdu 620041, China)

  • Xiaoqiong Feng

    (Sichuan Academy of Environmental Sciences, Chengdu 620041, China
    School of Environment, Sichuan University, Chengdu 610065, China)

  • Junhui Chen

    (Sichuan Academy of Environmental Sciences, Chengdu 620041, China
    School of Environment, Tsinghua University, Beijing 100084, China)

Abstract

In the context of global warming and climate change, various international communities have set different reduction targets for carbon emissions. In 2020, China proposed that CO 2 emissions will peak by 2030 and reached a critical period in which carbon reduction is a key strategic direction. Sichuan Academy of Environmental Sciences published the “Panzhihua Three-Year Iron Fist Gas Control Action Plan” in 2021. The measures implemented in the plan only address general considerations of conventional pollutants in the atmosphere. This study established the Panzhihua LEAP model based on the GREAT tool and built four simulation scenarios, including pollutant treatment upgrade (PTU), traffic improvement (TI), boiler remediation (BR), and baseline scenarios for industrial sources, mobile sources, and industrial boilers in policy implementation. It provided a supportive basis for the development of environmental protection measures in Sichuan province to increase the efficiency of carbon emission reduction. The quantitative analysis of the simulation results for the five years from 2020 to 2024 was conducted to discuss the intrinsic links between carbon emissions and energy consumption, market storage, and demand under different scenarios. It concluded that the BR and TI scenarios benefit carbon reduction, while the PTU scenario negatively impacts it. This study provided recommendations for analyzing the carbon footprint at a city-wide level, quantifying the relationship between the implementation of relevant environmental measures and carbon emissions, which are available for policy development that incorporates carbon reduction considerations and offers relevant support for future research.

Suggested Citation

  • Junjie Wang & Yi Zhang & Linde Mei & Xuemei Xu & Hanmei Yin & Xiaoqiong Feng & Junhui Chen, 2022. "Carbon Reduction of the Three-Year Air Pollution Control Plan under the LEAP Model Using a GREAT Tool in Panzhihua, China," IJERPH, MDPI, vol. 19(21), pages 1-20, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14482-:d:963715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14482/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14482/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ciarli, Tommaso & Savona, Maria, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," Ecological Economics, Elsevier, vol. 158(C), pages 51-64.
    2. Hu, Guangxiao & Ma, Xiaoming & Ji, Junping, 2019. "Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China," Applied Energy, Elsevier, vol. 238(C), pages 876-886.
    3. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    2. Awaworyi Churchill, Sefa & Inekwe, John & Smyth, Russell & Zhang, Xibin, 2019. "R&D intensity and carbon emissions in the G7: 1870–2014," Energy Economics, Elsevier, vol. 80(C), pages 30-37.
    3. Shiran Victoria Shen, 2021. "Integrating Political Science into Climate Modeling: An Example of Internalizing the Costs of Climate-Induced Violence in the Optimal Management of the Climate," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    4. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    5. Junjie Wang & Yuan Li & Yi Zhang, 2022. "Research on Carbon Emissions of Road Traffic in Chengdu City Based on a LEAP Model," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    6. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    7. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    8. Merrick, James H. & Weyant, John P., 2019. "On choosing the resolution of normative models," European Journal of Operational Research, Elsevier, vol. 279(2), pages 511-523.
    9. Nagisa Shiiba & Hide-Fumi Yokoo & Voravee Saengavut & Siraprapa Bumrungkit, 2023. "Ambiguity Aversion And Individual Adaptation To Climate Change: Evidence From A Farmer Survey In Northeastern Thailand," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-29, February.
    10. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    11. Nathalie Lazaric & Pasquale Tridico & Sebastiano Fadda, 2020. "Governing structural changes and sustainability through (new) institutions and organizations," Journal of Evolutionary Economics, Springer, vol. 30(5), pages 1267-1273, November.
    12. Dandan Liu & Dewei Yang & Anmin Huang, 2021. "LEAP-Based Greenhouse Gases Emissions Peak and Low Carbon Pathways in China’s Tourist Industry," IJERPH, MDPI, vol. 18(3), pages 1-15, January.
    13. Savona, María, 2020. "A “new normal” as a “new essential”? COVID-19, digital transformations and employment structures," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), December.
    14. Jose Maria Rocha & Javier García-Cutrín & Maria-Jose Gutiérrez & Raul Prellezo & Eduardo Sanchez, 2021. "Dynamic Integrated Model for Assessing Fisheries: Discard Bans as an Implicit Value-Added Tax," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 1-20, September.
    15. Huntington, Hillard & Liddle, Brantley, 2022. "How energy prices shape OECD economic growth: Panel evidence from multiple decades," Energy Economics, Elsevier, vol. 111(C).
    16. Sturla F. Kvamsdal & Ivan Belik & Arnt Ove Hopland & Yuanhao Li, 2021. "A Machine Learning Analysis of the Recent Environmental and Resource Economics Literature," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(1), pages 93-115, May.
    17. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    18. Francesco Busato & Bruno Chiarini & Gianluigi Cisco & Maria Ferrara, 2023. "Green preferences," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3211-3253, April.
    19. In, Soh Young & Manav, Berk & Venereau, Clothilde M.A. & Cruz R., Luis Enrique & Weyant, John P., 2022. "Climate-related financial risk assessment on energy infrastructure investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Kevin D. Dayaratna & Ross McKitrick & Patrick J. Michaels, 2020. "Climate sensitivity, agricultural productivity and the social cost of carbon in FUND," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(3), pages 433-448, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14482-:d:963715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.