IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12432-d929244.html
   My bibliography  Save this article

A Study on the Non-Linear Impact of Digital Technology Innovation on Carbon Emissions in the Transportation Industry

Author

Listed:
  • Xiaoqin Chen

    (School of Economics, Fujian Normal University, Fuzhou 350007, China
    Department of International Economics and Trade, School of Business, Wuyi University, Wuyishan 354300, China)

  • Shenya Mao

    (School of Economics, Fujian Normal University, Fuzhou 350007, China)

  • Siqi Lv

    (School of Economics, Fujian Normal University, Fuzhou 350007, China)

  • Zhong Fang

    (School of Economics, Fujian Normal University, Fuzhou 350007, China)

Abstract

Transportation is an important part of social and economic development and is also a typical high-energy and high-emissions industry. Achieving low-carbon development in the transportation industry is a much-needed requirement and the only way to achieve high-quality development. Therefore, based on the relevant data of 30 provinces in China from 2010 to 2018, this research uses the static panel model, panel threshold model and spatial Durbin model to conduct an empirical study on the impact and mechanism of digital innovation on carbon emissions in the transportation industry, and draws the following conclusions. (1) Carbon emissions in the transportation industry have dynamic and continuous adjustment characteristics. (2) There is a significant inverted U-shape non-linear relationship between the level of digital innovation and carbon emissions in the industry. In regions with a low level of digital innovation, the application of digital technology increases carbon emissions in this industry, but as the level of digital innovation continues to increase its application suppresses carbon emissions, showing an effect of carbon emission reduction. (3) The impact of digital innovation on carbon emissions in the transportation industry has a spatial spillover effect, and its level in one province significantly impacts carbon emissions in other provinces’ transportation industry through the spatial spillover effect. Therefore, it is recommended to further strengthen the exchange and cooperation of digital innovation in the transportation industry between regions, improve the scale of digitalization in this industry, and accelerate its green transformation through digital innovation, thus promoting the green, low-carbon, and sustainable development of China’s economy.

Suggested Citation

  • Xiaoqin Chen & Shenya Mao & Siqi Lv & Zhong Fang, 2022. "A Study on the Non-Linear Impact of Digital Technology Innovation on Carbon Emissions in the Transportation Industry," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12432-:d:929244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Qiang & Murshed, Muntasir & Khan, Zeeshan, 2021. "The nexuses between energy investments, technological innovations, emission taxes, and carbon emissions in China," Energy Policy, Elsevier, vol. 155(C).
    2. Yi Liang & Dongxiao Niu & Haichao Wang & Yan Li, 2017. "Factors Affecting Transportation Sector CO 2 Emissions Growth in China: An LMDI Decomposition Analysis," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
    3. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    4. Lijiang Jia & Xiaoli Hu & Zhongwei Zhao & Bin He & Weiming Liu, 2022. "How Environmental Regulation, Digital Development and Technological Innovation Affect China’s Green Economy Performance: Evidence from Dynamic Thresholds and System GMM Panel Data Approaches," Energies, MDPI, vol. 15(3), pages 1-25, January.
    5. Glomsrod, Solveig & Taoyuan, Wei, 2005. "Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China?," Energy Policy, Elsevier, vol. 33(4), pages 525-542, March.
    6. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    7. Zhang, Yue-Jun & Jiang, Lin & Shi, Wei, 2020. "Exploring the growth-adjusted energy-emission efficiency of transportation industry in China," Energy Economics, Elsevier, vol. 90(C).
    8. Ying Sun & Fengqin Liu & Huaping Sun, 2022. "Does Standardization Improve Carbon Emission Efficiency as Soft Infrastructure? Evidence from China," Energies, MDPI, vol. 15(6), pages 1-17, March.
    9. Debao Dai & Yaodong Fan & Guangyu Wang & Jiaping Xie, 2022. "Digital Economy, R&D Investment, and Regional Green Innovation—Analysis Based on Provincial Panel Data in China," Sustainability, MDPI, vol. 14(11), pages 1-21, May.
    10. Nathan Nunn & Nancy Qian, 2014. "US Food Aid and Civil Conflict," American Economic Review, American Economic Association, vol. 104(6), pages 1630-1666, June.
    11. Chang, Yuan & Lei, Shuhua & Teng, Jianjian & Zhang, Jiangxue & Zhang, Lixiao & Xu, Xiao, 2019. "The energy use and environmental emissions of high-speed rail transportation in China: A bottom-up modeling," Energy, Elsevier, vol. 182(C), pages 1193-1201.
    12. Chao Bi & Jingjing Zeng, 2019. "Nonlinear and Spatial Effects of Tourism on Carbon Emissions in China: A Spatial Econometric Approach," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    13. Jiandong Chen & Ming Gao & Ke Ma & Malin Song, 2020. "Different effects of technological progress on China's carbon emissions based on sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 481-492, February.
    14. Jing Wang & Yubing Xu, 2021. "Internet Usage, Human Capital and CO 2 Emissions: A Global Perspective," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    15. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuoqi Teng & Yugang He & Zhi Qiao, 2023. "Exploring the Synergistic Effects of Digitalization and Economic Uncertainty on Environmental Sustainability: An Investigation from China," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    2. Chenyang Liu & Xinyao Wang & Ziming Bai & Hongye Wang & Cuixia Li, 2023. "Does Digital Technology Application Promote Carbon Emission Efficiency in Dairy Farms? Evidence from China," Agriculture, MDPI, vol. 13(4), pages 1-23, April.
    3. Xiangyi Lin & Hongyun Luo & Yinghuan Lian & Yifei Jiang, 2023. "Evaluation of the Social Effects of Enterprise Carbon Accounts Based on Variable Weight CFPR Fuzzy VIKOR," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    4. Xinlin Liao & Yu Zhang & Xinyu Wang & Ruijia Yuan, 2023. "Digitalization Level and Green-Oriented Transition Development of Highly Energy-Intensive Enterprises Based on Carbon Reduction Perspective," Sustainability, MDPI, vol. 15(21), pages 1-19, November.
    5. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Environmental Sustainability within Attaining Sustainable Development Goals: The Role of Digitalization and the Transport Sector," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    6. Huacheng Rao & Dongxu Chen & Feichao Shen & Yangyang Shen, 2022. "Can Green Bonds Stimulate Green Innovation in Enterprises? Evidence from China," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    7. Xuemei Jia & Qing Liu & Jiahao Feng & Yuru Li & Lijun Zhang, 2023. "The Induced Effects of Carbon Emissions for China’s Industry Digital Transformation," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    8. Yingzi Chen & Wanwan Yang & Yaqi Hu, 2022. "Internet Development, Consumption Upgrading and Carbon Emissions—An Empirical Study from China," IJERPH, MDPI, vol. 20(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    2. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    3. Zhu, Qing & Ma, Dan & He, Xin, 2023. "Digital transformation and firms' pollution emissions," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    4. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    5. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    6. Rongwu Zhang & Wenqiang Fu & Yingxu Kuang, 2022. "Can Digital Economy Promote Energy Conservation and Emission Reduction in Heavily Polluting Enterprises? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    7. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    8. Yu, Yang & Li, Shuangqi & Sun, Huaping & Taghizadeh-Hesary, Farhad, 2021. "Energy carbon emission reduction of China’s transportation sector: An input–output approach," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 378-393.
    9. Razzaq, Asif & Ajaz, Tahseen & Li, Jing Claire & Irfan, Muhammad & Suksatan, Wanich, 2021. "Investigating the asymmetric linkages between infrastructure development, green innovation, and consumption-based material footprint: Novel empirical estimations from highly resource-consuming economi," Resources Policy, Elsevier, vol. 74(C).
    10. Anwar, Ahsan & Sharif, Arshian & Fatima, Saba & Ahmad, Paiman & Sinha, Avik & Khan, Syed Abdul Rehman & Jermsittiparsert, Kittisak, 2021. "The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach," MPRA Paper 108160, University Library of Munich, Germany, revised 2021.
    11. Zhuoxi Yu & Shan Liu & Zhichuan Zhu, 2022. "Has the Digital Economy Reduced Carbon Emissions?: Analysis Based on Panel Data of 278 Cities in China," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
    12. Yuhao Yang & Fengying Yan, 2023. "An Inquiry into the Characteristics of Carbon Emissions in Inter-Provincial Transportation in China: Aiming to Typological Strategies for Carbon Reduction in Regional Transportation," Land, MDPI, vol. 13(1), pages 1-24, December.
    13. Kangni Lyu & Shuwang Yang & Kun Zheng & Yao Zhang, 2023. "How Does the Digital Economy Affect Carbon Emission Efficiency? Evidence from Energy Consumption and Industrial Value Chain," Energies, MDPI, vol. 16(2), pages 1-20, January.
    14. Nian Wang & Yingming Zhu, 2022. "The Integration of Traditional Transportation Infrastructure and Informatization Development: How Does It Affect Carbon Emissions?," Energies, MDPI, vol. 15(20), pages 1-23, October.
    15. Ahmadova, Gozal & Delgado-Márquez, Blanca L. & Pedauga, Luis E. & Leyva-de la Hiz, Dante I., 2022. "Too good to be true: The inverted U-shaped relationship between home-country digitalization and environmental performance," Ecological Economics, Elsevier, vol. 196(C).
    16. Jie Li & Zhengchuan Sun & Jie Zhou & Yaya Sow & Xufeng Cui & Haipeng Chen & Qianling Shen, 2023. "The Impact of the Digital Economy on Carbon Emissions from Cultivated Land Use," Land, MDPI, vol. 12(3), pages 1-18, March.
    17. Adekunle, Wasiu & Omo-Ikirodah, Beatrice & Collins, Olutosin & Adeniyi, Andrew & Bagudo, Abubakar & Mosobalaje, Risikat & Oladepo, Safiyyah, 2021. "Analysis of Environmental Degradation and its Determinants in Nigeria: New Evidence from ARDL and Causality Approaches," MPRA Paper 111069, University Library of Munich, Germany, revised 14 Dec 2021.
    18. Chen, Jun, 2023. "Mitigating nitrogen dioxide air pollution: The roles and effect of national smart city pilots in China," Energy, Elsevier, vol. 263(PA).
    19. Sun, Yunpeng & Ajaz, Tahseen & Razzaq, Asif, 2022. "How infrastructure development and technical efficiency change caused resources consumption in BRICS countries: Analysis based on energy, transport, ICT, and financial infrastructure indices," Resources Policy, Elsevier, vol. 79(C).
    20. Peng, Hua-Rong & Zhang, Yue-Jun & Liu, Jing-Yue, 2023. "The energy rebound effect of digital development: Evidence from 285 cities in China," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12432-:d:929244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.