IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i24p12910-d697058.html
   My bibliography  Save this article

Green TFP Heterogeneity in the Ports of China’s Pilot Free Trade Zone under Environmental Constraints

Author

Listed:
  • Zongbiao Hu

    (Department of Economics and Trade, School of Business Administration, Zhongnan University of Economics and Law, 182 Nanhu Avenue, Wuhan 430073, China)

  • Feng Lan

    (Department of Economics and Trade, School of Business Administration, Zhongnan University of Economics and Law, 182 Nanhu Avenue, Wuhan 430073, China)

  • Han Xu

    (Department of Business Administration, School of Management, Wuhan College, 333 Huangjiahu Avenue, Wuhan 430212, China)

Abstract

In the context of China’s Pilot Free Trade Zone (FTZ), ports have a new opportunity to realize high-quality development. Based on the analysis of the current situation of pollutant emissions from ports in China’s Pilot Free Trade Zones (FTZs), this paper introduces environmental factors into the analysis framework of the total factor productivity (TFP) of ports in China’s FTZs, and uses the Global Malmquist–Luenberger index method to analyze the evolution trend and heterogeneity of green TFP in 28 ports of China’s 19 FTZs from 2011 to 2017. The results show that firstly, the emissions of sulfur dioxide ( SO 2 ), nitrogen oxides ( NO X ) and other pollutants in China’s FTZs have been decreasing year by year. Secondly, both the green TFP and the traditional TFP of the ports in FTZs are on the rise. The absence of environmental factors leads to the underestimation of the TFP of ports. For the green TFP, the main source of its growth is technological progress. Thirdly, there is obvious port heterogeneity in the green TFP of FTZ ports. Nanjing Port has the highest green TFP growth rate, with an average annual growth rate of 21.95%. Ningbo Port, which ranks 14th, has an average annual growth rate of 5.46%. Fuzhou Port, which is rated last, has negative growth. Fourthly, there is also obvious types and regional heterogeneity in the green TFP of FTZ ports. When categorized by type, the average annual growth rate of green TFP in inland ports is significantly higher than that of coastal ports. When categorized by region, the descending order of the average annual growth rate of green TFP is the western region, the eastern region and the central region. Fifthly, the green TFP differences among the eastern, central, and western regions, as well as between inland ports and coastal ports, are shrinking. Moreover, the green TFP differences within inland ports and coastal ports and within central ports and eastern ports are also shrinking, implying there may be σ convergence. The conclusions of this paper have important implications for the scientific understanding of the heterogeneity of green TFP growth in ports in China’s FTZs, and how to promote the green development of ports in China’s FTZs under environmental constraints.

Suggested Citation

  • Zongbiao Hu & Feng Lan & Han Xu, 2021. "Green TFP Heterogeneity in the Ports of China’s Pilot Free Trade Zone under Environmental Constraints," IJERPH, MDPI, vol. 18(24), pages 1-21, December.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:12910-:d:697058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/24/12910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/24/12910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sonal Seth & Qianmei Feng, 2020. "Assessment of port efficiency using stepwise selection and window analysis in data envelopment analysis," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 536-561, December.
    2. Henrik Horn & Petros C. Mavroidis & André Sapir, 2010. "Beyond the WTO? An Anatomy of EU and US Preferential Trade Agreements," The World Economy, Wiley Blackwell, vol. 33(11), pages 1565-1588, November.
    3. Rolf Färe & Shawna Grosskopf & Carl A Pasurka, Jr., 2001. "Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth," Journal of Regional Science, Wiley Blackwell, vol. 41(3), pages 381-409, August.
    4. Sun, Jiasen & Yuan, Yang & Yang, Rui & Ji, Xiang & Wu, Jie, 2017. "Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis," Transport Policy, Elsevier, vol. 60(C), pages 75-86.
    5. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    6. Oh, Dong-hyun, 2010. "A metafrontier approach for measuring an environmentally sensitive productivity growth index," Energy Economics, Elsevier, vol. 32(1), pages 146-157, January.
    7. Subhadarsini Parida & Subramaniam Ananthram & Christopher Chan & Kerry Brown, 2021. "Green office buildings and sustainability: Does green human resource management elicit green behaviors?," Post-Print hal-03516261, HAL.
    8. Tsakiridis, Andreas & Mateo-Mantecón, Ingrid & O'Connor, Eamonn & Hynes, Stephen & O'Donoghue, Cathal, 2021. "Efficiency benchmarking of Irish and North Atlantic Spanish ports: Implications for blue growth," Utilities Policy, Elsevier, vol. 72(C).
    9. Sabina TUCA, 2014. "The Relationship Between Globalization And The Economic Crisis," The USV Annals of Economics and Public Administration, Stefan cel Mare University of Suceava, Romania, Faculty of Economics and Public Administration, vol. 14(1(19)), pages 120-126, June.
    10. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    11. Liu, Jiaguo & Wang, Xiaoye & Guo, Junyu, 2021. "Port efficiency and its influencing factors in the context of Pilot Free Trade Zones," Transport Policy, Elsevier, vol. 105(C), pages 67-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stergiou, Eirini & Rigas, Nikos & Kounetas, Konstantinos, 2021. "Environmental Productivity and Convergence of European Manufacturing Industries. Are they Under Pressure?," MPRA Paper 110780, University Library of Munich, Germany.
    2. Juan Aparicio & Javier Barbero & Magdalena Kapelko & Jesus T. Pastor & Jose L. Zofio, 2016. "Environmental Productivity Change in World Air Emissions: A new Malmquist-Luenberger Index Approach," JRC Research Reports JRC104083, Joint Research Centre.
    3. Chung, Yeimin & Heshmati, Almas, 2013. "Measurement of Environmentally Sensitive Productivity Growth in Korean Industries," IZA Discussion Papers 7235, Institute of Labor Economics (IZA).
    4. Kabata, Tshepelayi, 2011. "The US Agriculture Greenhouse Emissions and Environmental Performance," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103427, Agricultural and Applied Economics Association.
    5. Ananda, Jayanath & Hampf, Benjamin, 2015. "Measuring environmentally sensitive productivity growth: An application to the urban water sector," Ecological Economics, Elsevier, vol. 116(C), pages 211-219.
    6. Pooja Bansal & Aparna Mehra & Sunil Kumar, 2022. "Dynamic Metafrontier Malmquist–Luenberger Productivity Index in Network DEA: An Application to Banking Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 297-324, January.
    7. Stergiou, Eirini & Rigas, Nikos & Kounetas, Konstantinos E., 2023. "Environmental productivity growth across European industries," Energy Economics, Elsevier, vol. 123(C).
    8. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    9. Sinwoo Lee & Dong-Woon Noh & Dong-hyun Oh, 2018. "Characterizing the Difference between Indirect and Direct CO 2 Emissions: Evidence from Korean Manufacturing Industries, 2004–2010," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    10. Yongrok Choi & Dong-hyun Oh & Ning Zhang, 2015. "Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist–Luenberger productivity index approach," Empirical Economics, Springer, vol. 49(3), pages 1017-1043, November.
    11. Yung-Hsiang Lu & Ku-Hsieh Chen & Jen-Chi Cheng & Chih-Chun Chen & Sian-Yuan Li, 2019. "Analysis of Environmental Productivity on Fossil Fuel Power Plants in the U.S," Sustainability, MDPI, vol. 11(24), pages 1-27, December.
    12. Jia-Ching Juo & Yu-Hui Lin & Tsai-Chia Chen, 2015. "Productivity change of Taiwanese farmers’ credit unions: a nonparametric metafrontier Malmquist–Luenberger productivity indicator," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(1), pages 125-147, March.
    13. Fei, Rilong & Lin, Boqiang, 2016. "Energy efficiency and production technology heterogeneity in China's agricultural sector: A meta-frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 25-34.
    14. Zhou, Yutao & Li, Zhenfu & Duan, Wei & Deng, Zhao, 2023. "The impact of provincial port integration on port efficiency: Empirical evidence from China's Coastal Provinces," Journal of Transport Geography, Elsevier, vol. 108(C).
    15. Evelin Krmac & Mozhgan Mansouri Kaleibar, 2023. "A comprehensive review of data envelopment analysis (DEA) methodology in port efficiency evaluation," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(4), pages 817-881, December.
    16. Zhang, Ning & Wang, Bing, 2015. "A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case," Energy Economics, Elsevier, vol. 51(C), pages 88-98.
    17. Min Wang & Huayu Li & Yung-ho Chiu & Kexin Deng & Menghua Deng, 2023. "Research on the Carbon Emission Reduction Potential of the Ports in the Yangtze River Delta of China," SAGE Open, , vol. 13(4), pages 21582440231, November.
    18. Li, Sujuan & Liu, Jiaguo & Kong, Yudan, 2021. "Pilot free trade zones and Chinese port-listed companies performance: An empirical research based on quasi-natural experiment," Transport Policy, Elsevier, vol. 111(C), pages 125-137.
    19. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    20. Yu, Yanni & Qian, Tao & Du, Limin, 2017. "Carbon productivity growth, technological innovation, and technology gap change of coal-fired power plants in China," Energy Policy, Elsevier, vol. 109(C), pages 479-487.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:12910-:d:697058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.