IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2020i1p89-d467878.html
   My bibliography  Save this article

Carbon Emissions Trading and Sustainable Development in China: Empirical Analysis Based on the Coupling Coordination Degree Model

Author

Listed:
  • Jingru Huang

    (School of Economics, Shenzhen University, Shenzhen 518060, China)

  • Jie Shen

    (Shenzhen Audencia Business School—Shenzhen University, Shenzhen University, Shenzhen 518060, China)

  • Lu Miao

    (China Center for Special Economic Zone Research, Shenzhen University, Shenzhen 518060, China)

Abstract

Despite the extensive attention paid to emissions trading scheme (ETS) approaches, few studies have examined whether such ETS policies can lead to sustainable development in China. Drawing on the ideas of coupling and synergistic development, this study views sustainable development as the result of the interactions between the economy and the environment and constructs an index system to measure economic development and environmental quality. The system coupling model is used to reflect the synergistic interactions between the economy and the environment systems. The coordination degree model is then used to assess the economic–environmental coupling coordination degree in order to measure sustainable development. The empirical results show that the ETS can help in achieving economic–environmental sustainable development in the pilot cities. Moreover, the better the socioeconomic development of a city, the better effects of the ETS on sustainable development. However, it is more difficult to achieve economic–environmental coordinated development in industrially developed areas (e.g., Guangdong). These findings provide empirical evidence that the market-based ETS could alleviate the conflict between economic development and environmental pollution and could help in achieving sustainable development in emerging economies.

Suggested Citation

  • Jingru Huang & Jie Shen & Lu Miao, 2020. "Carbon Emissions Trading and Sustainable Development in China: Empirical Analysis Based on the Coupling Coordination Degree Model," IJERPH, MDPI, vol. 18(1), pages 1-13, December.
  • Handle: RePEc:gam:jijerp:v:18:y:2020:i:1:p:89-:d:467878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/1/89/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/1/89/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein & Yadulla Hasanli, 2019. "Commodity Revenues, Agricultural Sector and the Magnitude of Deindustrialization: A Novel Multisector Perspective," Economies, MDPI, vol. 7(4), pages 1-15, November.
    2. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    3. Jaraitė, Jūratė & Di Maria, Corrado, 2012. "Efficiency, productivity and environmental policy: A case study of power generation in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1557-1568.
    4. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    5. Xueping Wu & Ming Gao & Shihong Guo & Rashid Maqbool, 2019. "Environmental and economic effects of sulfur dioxide emissions trading pilot scheme in China: A quasi-experiment," Energy & Environment, , vol. 30(7), pages 1255-1274, November.
    6. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    7. Jia Wan & Liwei Zhang & Junping Yan & Xiaomeng Wang & Ting Wang, 2020. "Spatial–Temporal Characteristics and Influencing Factors of Coupled Coordination between Urbanization and Eco-Environment: A Case Study of 13 Urban Agglomerations in China," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    8. World Bank, 2016. "World Development Indicators 2016," World Bank Publications - Books, The World Bank Group, number 23969.
    9. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    10. Elkhan Richard Sadik-Zada, 2020. "Distributional Bargaining and the Speed of Structural Change in the Petroleum Exporting Labor Surplus Economies," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 32(1), pages 51-98, January.
    11. Wang, Jieyu & Wang, Shaojian & Li, Shijie & Feng, Kuishuang, 2019. "Coupling analysis of urbanization and energy-environment efficiency: Evidence from Guangdong province," Applied Energy, Elsevier, vol. 254(C).
    12. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    13. Yan, Yaxue & Zhang, Xiaoling & Zhang, Jihong & Li, Kai, 2020. "Emissions trading system (ETS) implementation and its collaborative governance effects on air pollution: The China story," Energy Policy, Elsevier, vol. 138(C).
    14. Friedl, Birgit & Getzner, Michael, 2003. "Determinants of CO2 emissions in a small open economy," Ecological Economics, Elsevier, vol. 45(1), pages 133-148, April.
    15. Shixiang Li & Jianru Shi & Qiaosheng Wu, 2020. "Environmental Kuznets Curve: Empirical Relationship between Energy Consumption and Economic Growth in Upper-Middle-Income Regions of China," IJERPH, MDPI, vol. 17(19), pages 1-27, September.
    16. Easwaran Narassimhan & Kelly S. Gallagher & Stefan Koester & Julio Rivera Alejo, 2018. "Carbon pricing in practice: a review of existing emissions trading systems," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 967-991, September.
    17. Robert N. Stavins, 1998. "What Can We Learn from the Grand Policy Experiment? Lessons from SO2 Allowance Trading," Journal of Economic Perspectives, American Economic Association, vol. 12(3), pages 69-88, Summer.
    18. Bin Ye & Jingjing Jiang & Lixin Miao & Ji Li & Yang Peng, 2015. "Innovative Carbon Allowance Allocation Policy for the Shenzhen Emission Trading Scheme in China," Sustainability, MDPI, vol. 8(1), pages 1-23, December.
    19. Wang, Peng & Dai, Han-cheng & Ren, Song-yan & Zhao, Dai-qing & Masui, Toshihiko, 2015. "Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China," Energy, Elsevier, vol. 79(C), pages 212-227.
    20. Van Thac Dang & Jianming Wang & Wilson Van-Thac Dang, 2019. "An Integrated Fuzzy AHP and Fuzzy TOPSIS Approach to Assess Sustainable Urban Development in an Emerging Economy," IJERPH, MDPI, vol. 16(16), pages 1-20, August.
    21. Tao Pang & Maosheng Duan, 2016. "Cap setting and allowance allocation in China's emissions trading pilot programmes: special issues and innovative solutions," Climate Policy, Taylor & Francis Journals, vol. 16(7), pages 815-835, October.
    22. Elkhan Richard Sadik-Zada & Mattia Ferrari, 2020. "Environmental Policy Stringency, Technical Progress and Pollution Haven Hypothesis," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanhong Zhao & Peng Hou & Jinbao Jiang & Jun Zhai & Yan Chen & Yongcai Wang & Junjun Bai & Bing Zhang & Haitao Xu, 2021. "Coordination Study on Ecological and Economic Coupling of the Yellow River Basin," IJERPH, MDPI, vol. 18(20), pages 1-18, October.
    2. Junjie Cao & Yao Zhang & Taoyuan Wei & Hui Sun, 2021. "Temporal–Spatial Evolution and Influencing Factors of Coordinated Development of the Population, Resources, Economy and Environment (PREE) System: Evidence from 31 Provinces in China," IJERPH, MDPI, vol. 18(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Polloni-Silva & Diogo Ferraz & Flávia de Castro Camioto & Daisy Aparecida do Nascimento Rebelatto & Herick Fernando Moralles, 2021. "Environmental Kuznets Curve and the Pollution-Halo/Haven Hypotheses: An Investigation in Brazilian Municipalities," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    2. Le Hoang Phong & Dang Thi Bach Van & Ho Hoang Gia Bao, 2018. "The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 275-283.
    3. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein, 2020. "Drivers of CO 2 -Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses," Energies, MDPI, vol. 13(15), pages 1-24, August.
    4. Sapkota, Pratikshya & Bastola, Umesh, 2017. "Foreign direct investment, income, and environmental pollution in developing countries: Panel data analysis of Latin America," Energy Economics, Elsevier, vol. 64(C), pages 206-212.
    5. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    6. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    7. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    8. A. Suresh & P. Krishnan & Girish K. Jha & A. Amarender Reddy, 2022. "Agricultural Sustainability and Its Trends in India: A Macro-Level Index-Based Empirical Evaluation," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    9. Mehmet Demiral & Emrah Eray Akça & Ipek Tekin, 2021. "Predictors of global carbon dioxide emissions: Do stringent environmental policies matter?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18337-18361, December.
    10. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
    11. Louis Sevitnenyi Nkwatoh, 2022. "Zero-pollution effect and economic development: standard and nested environmental Kuznets curve analyses for West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11895-11910, October.
    12. Twerefou Daniel Kwabena & Adusah-Poku Frank & Bekoe William, 2016. "An empirical examination of the Environmental Kuznets Curve hypothesis for carbon dioxide emissions in Ghana: an ARDL approach," Environmental & Socio-economic Studies, Sciendo, vol. 4(4), pages 1-12, December.
    13. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2021. "Analysing the relationship between CO2 emissions and GDP in China: a fractional integration and cointegration approach," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-16, December.
    14. Sinha, Avik & Bhattacharya, Joysankar, 2017. "Estimation of environmental Kuznets curve for SO2 emission: A case of Indian cities," MPRA Paper 100009, University Library of Munich, Germany.
    15. Sofien Tiba & Mohamed Frikha, 2020. "EKC and Macroeconomics Aspects of Well-being: a Critical Vision for a Sustainable Future," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(3), pages 1171-1197, September.
    16. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    17. Giedrė Lapinskienė & Kęstutis Peleckis & Neringa Slavinskaitė, 2017. "Energy consumption, economic growth and greenhouse gas emissions in the European Union countries," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(6), pages 1082-1097, November.
    18. Chen, Chunhua & Jiang, Dequan & Lan, Meng & Li, Weiping & Ye, Ling, 2022. "Does environmental regulation affect labor investment Efficiency?Evidence from a quasi-natural experiment in China," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 82-95.
    19. Zhang, Yu & Zhang, Sufang, 2018. "The impacts of GDP, trade structure, exchange rate and FDI inflows on China's carbon emissions," Energy Policy, Elsevier, vol. 120(C), pages 347-353.
    20. Carmen Díaz-Roldán & María del Carmen Ramos-Herrera, 2021. "Innovations and ICT: Do They Favour Economic Growth and Environmental Quality?," Energies, MDPI, vol. 14(5), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2020:i:1:p:89-:d:467878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.