IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v15y2024i4d10.1007_s13132-024-01750-1.html
   My bibliography  Save this article

Navigating the Intersection of Economic Growth and Environmental Protection: An Analysis of Sustainable Transformation

Author

Listed:
  • Shiwei Jiang

    (Zhengzhou University)

Abstract

This study delves into the intricate relationship between economic growth and carbon emissions, focusing on Shandong Province, China. Through an extensive analysis of decoupling dynamics, decomposition factors, and decoupling efforts, the study uncovers significant insights into the complex interplay between economic prosperity and environmental sustainability. The research reveals a pivotal shift in decoupling trends, with carbon emissions showing a consistent rise prior to 2015, driven by extensive fossil energy consumption. However, since 2003, a marked decline in the growth rate of carbon emissions has been observed, attributed to proactive policy implementations enhancing energy efficiency and environmental protection measures. The introduction of decoupling elasticity further enriches this understanding, showcasing an inverted N-shaped trend from 2001 to 2021, indicating a dynamic interplay between carbon emissions and economic growth. Decomposition analysis highlights the crucial role of energy use efficiency, driven by the energy intensity effect, in reducing aggregate carbon emissions. The industrial production effect also plays a critical role in moderating emissions. The concept of decoupling effort underscores the efficacy of environmental protection policies in promoting sustainable economic growth. Government-led economic reforms since 2006 have been pivotal in achieving weak decoupling efforts in states. Additionally, a dynamic decoupling prediction model based on the IPAT function offers valuable insights for guiding environmental policies, enhancing our understanding of the potential impact of different policies on decoupling trends. This research not only contributes significantly to existing knowledge but also offers essential implications for policymakers in their pursuit of sustainable development in this pivotal region.

Suggested Citation

  • Shiwei Jiang, 2024. "Navigating the Intersection of Economic Growth and Environmental Protection: An Analysis of Sustainable Transformation," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 16291-16310, December.
  • Handle: RePEc:spr:jknowl:v:15:y:2024:i:4:d:10.1007_s13132-024-01750-1
    DOI: 10.1007/s13132-024-01750-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-024-01750-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-024-01750-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marian R. Chertow, 2000. "The IPAT Equation and Its Variants," Journal of Industrial Ecology, Yale University, vol. 4(4), pages 13-29, October.
    2. Jingru Huang & Jie Shen & Lu Miao, 2020. "Carbon Emissions Trading and Sustainable Development in China: Empirical Analysis Based on the Coupling Coordination Degree Model," IJERPH, MDPI, vol. 18(1), pages 1-13, December.
    3. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposing the decoupling of CO2 emissions and economic growth in Brazil," Ecological Economics, Elsevier, vol. 70(8), pages 1459-1469, June.
    4. Shu Yang & Dingtao Zhao & Yanrui Wu & Jin Fan, 2013. "Regional Variation in Carbon Emissions and its Driving Forces in China: An Index Decomposition Analysis," Energy & Environment, , vol. 24(7-8), pages 1249-1270, December.
    5. Chong, ChinHao & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou & Li, Xu & Song, Shizhong, 2017. "LMDI decomposition of energy consumption in Guangdong Province, China, based on an energy allocation diagram," Energy, Elsevier, vol. 133(C), pages 525-544.
    6. Lei Qiu & Jingyi Huang & Wenjuan Niu, 2018. "Decoupling and Driving Factors of Economic Growth and Groundwater Consumption in the Coastal Areas of the Yellow Sea and the Bohai Sea," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    7. Diakoulaki, D. & Mandaraka, M., 2007. "Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector," Energy Economics, Elsevier, vol. 29(4), pages 636-664, July.
    8. Dong, Bai & Zhang, Ming & Mu, Hailin & Su, Xuanming, 2016. "Study on decoupling analysis between energy consumption and economic growth in Liaoning Province," Energy Policy, Elsevier, vol. 97(C), pages 414-420.
    9. YoungSeok Hwang & Jung-Sup Um & Stephan Schlüter, 2020. "Evaluating the Mutual Relationship between IPAT/Kaya Identity Index and ODIAC-Based GOSAT Fossil-Fuel CO 2 Flux: Potential and Constraints in Utilizing Decomposed Variables," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    10. Liu, Chang & Lin, Boqiang, 2018. "Analysis of the changes in the scale of natural gas subsidy in China and its decomposition factors," Energy Economics, Elsevier, vol. 70(C), pages 37-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Wendong & Cai, Wenqiu & Guo, Yi & Bai, Caiquan & Yang, Luzhen, 2020. "Decoupling relationship between energy consumption and economic growth in China's provinces from the perspective of resource security," Resources Policy, Elsevier, vol. 68(C).
    2. Jingxing Liu & Hailing Li & Tianqi Liu, 2022. "Decoupling Regional Economic Growth from Industrial CO 2 Emissions: Empirical Evidence from the 13 Prefecture-Level Cities in Jiangsu Province," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    3. Dequn Zhou & Lu Zhang & Donglan Zha & Fei Wu & Qunwei Wang, 2019. "Decoupling and decomposing analysis of construction industry’s energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 39-53, January.
    4. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    5. Torres-Brito, David Israel & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2023. "Impacto de los contaminantes por gases de efecto invernadero en el crecimiento económico en 86 países (1990-2019): Sobre la curva inversa de Kuznets [Impact of the Effect of Greenhouse Gas Pollutan," MPRA Paper 119031, University Library of Munich, Germany.
    6. Doreen Fedrigo-Fazio & Jean-Pierre Schweitzer & Patrick Ten Brink & Leonardo Mazza & Alison Ratliff & Emma Watkins, 2016. "Evidence of Absolute Decoupling from Real World Policy Mixes in Europe," Sustainability, MDPI, vol. 8(6), pages 1-22, May.
    7. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
    8. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
    9. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    10. Oluwatoyin J. Gbadeyan & Joseph Muthivhi & Linda Z. Linganiso & Nirmala Deenadayalu, 2024. "Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review," Clean Technol., MDPI, vol. 6(3), pages 1-38, August.
    11. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    12. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    13. Jiasha Fu & Fan Wang & Jin Guo, 2024. "Decoupling Economic Growth from Carbon Emissions in the Yangtze River Economic Belt of China: From the Coordinated Regional Development Perspective," Sustainability, MDPI, vol. 16(6), pages 1-24, March.
    14. Weiguo Fan & Mengmeng Meng & Jianchang Lu & Xiaobin Dong & Hejie Wei & Xuechao Wang & Qing Zhang, 2020. "Decoupling Elasticity and Driving Factors of Energy Consumption and Economic Development in the Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    15. Yong Wang & Yu Zhou & Lin Zhu & Fei Zhang & Yingchun Zhang, 2018. "Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions," Energies, MDPI, vol. 11(5), pages 1-29, May.
    16. Gao, Yuan & Chong, Chin Hao & Liu, Gengyuan & Casazza, Marco & Xiong, Xiaoping & Liu, Bojie & Zhou, Xuanru & Zhou, Xiaoyong & Li, Zheng & Ni, Weidou & Hao, Yan & Ma, Linwei, 2024. "Identification of carbon responsibility factors based on energy consumption from 2005 to 2020 in China," Energy, Elsevier, vol. 296(C).
    17. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    18. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
    19. Ming-Ming Zhao & Rongrong Li, 2018. "Decoupling and decomposition analysis of carbon emissions from economic output in Chinese Guangdong Province: A sector perspective," Energy & Environment, , vol. 29(4), pages 543-555, June.
    20. Zhang, Ming & Guo, Fangyan, 2013. "Analysis of rural residential commercial energy consumption in China," Energy, Elsevier, vol. 52(C), pages 222-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:15:y:2024:i:4:d:10.1007_s13132-024-01750-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.