IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i6p2102-d335508.html
   My bibliography  Save this article

An Occupational Heat Stress and Hydration Assessment of Agricultural Workers in North Mexico

Author

Listed:
  • Rietta S. Wagoner

    (Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85721, USA)

  • Nicolas I. López-Gálvez

    (Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85721, USA)

  • Jill G. de Zapien

    (Department of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85721, USA)

  • Stephanie C. Griffin

    (Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85721, USA)

  • Robert A. Canales

    (Interdisciplinary Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA)

  • Paloma I. Beamer

    (Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85721, USA)

Abstract

Expanding agribusiness in Northern Mexico has increased demand for workers from Southern Mexico, with hundreds of thousands migrating for work annually. Extreme temperatures, physical labor, and low fluid consumption place workers at risk for heat strain and dehydration, commonly underreported hazards in the agricultural industry. The objectives of this pilot study were to assess heat exposure and hydration status of a population of migratory agricultural workers in Northern Mexico throughout the grape harvest season. In addition to demographic information, environmental conditions, hydration status, and core body temperatures were collected. The majority listed Chiapas as their home state, nearly half spoke an Indigenous language, and none had completed high school. The wet-bulb globe temperature was significantly higher during the harvest and post-harvest seasons compared to the pre-harvest season. Across the different seasons, the majority were dehydrated post-shift, and mean core body temperature of workers was not significantly different. This project highlights the need for targeted interventions to improve hydration and prevent heat stress in this region. As the number of warm days is expected to rise each year worldwide, it will be increasingly important to engage in practices to protect vulnerable populations, such as migratory agriculture workers.

Suggested Citation

  • Rietta S. Wagoner & Nicolas I. López-Gálvez & Jill G. de Zapien & Stephanie C. Griffin & Robert A. Canales & Paloma I. Beamer, 2020. "An Occupational Heat Stress and Hydration Assessment of Agricultural Workers in North Mexico," IJERPH, MDPI, vol. 17(6), pages 1-13, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:6:p:2102-:d:335508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/6/2102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/6/2102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quandt, S.A. & Wiggins, M.F. & Chen, H. & Bischoff, W.E. & Arcury, T.A., 2013. "Heat index in migrant farmworker housing: Implications for rest and recovery from work-related heat stress," American Journal of Public Health, American Public Health Association, vol. 103(8), pages 24-26.
    2. Hallie Eakin & Victor Magaña & Joel Smith & José Moreno & José Martínez & Osvaldo Landavazo, 2007. "A stakeholder driven process to reduce vulnerability to climate change in Hermosillo, Sonora, Mexico," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 935-955, June.
    3. Hübler, Michael & Klepper, Gernot & Peterson, Sonja, 2008. "Costs of climate change: The effects of rising temperatures on health and productivity in Germany," Ecological Economics, Elsevier, vol. 68(1-2), pages 381-393, December.
    4. Kerstin K. Zander & Wouter J. W. Botzen & Elspeth Oppermann & Tord Kjellstrom & Stephen T. Garnett, 2015. "Heat stress causes substantial labour productivity loss in Australia," Nature Climate Change, Nature, vol. 5(7), pages 647-651, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Orysiak & Magdalena Młynarczyk & Paweł Tomaszewski, 2022. "Hydration Status in Men Working in Different Thermal Environments: A Pilot Study," IJERPH, MDPI, vol. 19(9), pages 1-15, May.
    2. Laura J. Elstub & Shimra J. Fine & Karl E. Zelik, 2021. "Exoskeletons and Exosuits Could Benefit from Mode-Switching Body Interfaces That Loosen/Tighten to Improve Thermal Comfort," IJERPH, MDPI, vol. 18(24), pages 1-12, December.
    3. Yang Liu & Xiaoling Li & Jiarui Lai & Aibin Zhu & Xiaodong Zhang & Ziming Zheng & Huijin Zhu & Yueyang Shi & Long Wang & Zhangyi Chen, 2021. "The Effects of a Passive Exoskeleton on Human Thermal Responses in Temperate and Cold Environments," IJERPH, MDPI, vol. 18(8), pages 1-17, April.
    4. Mkaddem, Chamseddine & Mahjoubi, Soufiane, 2022. "Climate change and its impact on water consumption in Tunisia: Evidence from ARDL approach," MPRA Paper 115658, University Library of Munich, Germany, revised Dec 2022.
    5. Zijun Li & Huasen Liu & Yu Xu & Rongrong Li & Mintao Jia & Mengsheng Zhang, 2021. "Numerical Analysis on the Thermal Performance in an Excavating Roadway with Auxiliary Ventilation System," IJERPH, MDPI, vol. 18(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peillex, Jonathan & El Ouadghiri, Imane & Gomes, Mathieu & Jaballah, Jamil, 2021. "Extreme heat and stock market activity," Ecological Economics, Elsevier, vol. 179(C).
    2. He, Bao-Jie & Wang, Junsong & Zhu, Jin & Qi, Jinda, 2022. "Beating the urban heat: Situation, background, impacts and the way forward in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Hoffmann, Christin, 2019. "Estimating the benefits of adaptation to extreme climate events, focusing on nonmarket damages," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    4. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    5. Marko Korhonen & Suvi Kangasrääsiö & Rauli Svento, 2017. "Climate change and mortality: Evidence from 23 developed countries between 1960 and 2010," Proceedings of International Academic Conferences 5107635, International Institute of Social and Economic Sciences.
    6. Ziebarth, N. R. & Schmitt, M. & Karlsson, M., 2013. "The short-term population health effects of weather and pollution: implications of climate change," Health, Econometrics and Data Group (HEDG) Working Papers 13/34, HEDG, c/o Department of Economics, University of York.
    7. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    8. Mariano J. Rabassa & Mariana Conte Grand & Christian M. García-Witulski, 2021. "Heat warnings and avoidance behavior: evidence from a bike-sharing system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 1-28, January.
    9. Mireille Chiroleu-Assouline & Mouez Fodha, 2011. "Environmental Tax and the Distribution of Income among Heterogeneous Workers," Annals of Economics and Statistics, GENES, issue 103-104, pages 71-92.
    10. Wen Yi & Albert P. C. Chan, 2017. "Effects of Heat Stress on Construction Labor Productivity in Hong Kong: A Case Study of Rebar Workers," IJERPH, MDPI, vol. 14(9), pages 1-14, September.
    11. Letian Li & Boyang Sun & Zhuqiang Hu & Jun Zhang & Song Gao & Haifeng Bian & Jiansong Wu, 2022. "Heat Strain Evaluation of Power Grid Outdoor Workers Based on a Human Bioheat Model," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    12. Daghagh Yazd, Sahar & Wheeler, Sarah Ann & Zuo, Alec, 2020. "Understanding the impacts of water scarcity and socio-economic demographics on farmer mental health in the Murray-Darling Basin," Ecological Economics, Elsevier, vol. 169(C).
    13. Randazzo, Teresa & Pavanello, Filippo & De Cian, Enrica, 2023. "Adaptation to climate change: Air-conditioning and the role of remittances," Journal of Environmental Economics and Management, Elsevier, vol. 120(C).
    14. Laetitia H. M. Schmitt & Hilary M. Graham & Piran C. L. White, 2016. "Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review," IJERPH, MDPI, vol. 13(11), pages 1-19, November.
    15. Harriet Brookes Gray & Vis Taraz & Simon D. Halliday, 2021. "The Impacts of Weather Shocks on Employment Outcomes: Evidence from South Africa," Bristol Economics Discussion Papers 21/752, School of Economics, University of Bristol, UK.
    16. Zander, Kerstin K. & Mathew, Supriya, 2019. "Estimating economic losses from perceived heat stress in urban Malaysia," Ecological Economics, Elsevier, vol. 159(C), pages 84-90.
    17. Haqiqi, Iman & Buzan, Jonathan & Zanetti De Lima, Cicero & Hertel, Thomas, 2020. "Margins of Adaptation to Human Heat Stress: Local, National, and Global Socioeconomic Responses," Conference papers 333237, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Nguyen, Cuong Viet & Nguyen, Manh-Hung & Nguyen, Toan Truong, 2022. "Climate Change, Cold Waves, Heat Waves, and Mortality: Evidence from a Lower Middle-Income Country," GLO Discussion Paper Series 1034, Global Labor Organization (GLO).
    19. Anton Orlov & Jana Sillmann & Asbjørn Aaheim & Kristin Aunan & Karianne Bruin, 2019. "Economic Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case Study of Europe," Economics of Disasters and Climate Change, Springer, vol. 3(3), pages 191-211, October.
    20. Richard S.J. Tol, 2020. "The Economic Impact of Weather and Climate," Video Library 2094, Department of Economics, University of Sussex Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:6:p:2102-:d:335508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.