IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i23p4873-d293739.html
   My bibliography  Save this article

Decoupling Analysis of Water Footprint and Economic Growth: A Case Study of Beijing–Tianjin–Hebei Region from 2004 to 2017

Author

Listed:
  • Yang Kong

    (Business School, Hohai University, Nanjing 211100, China)

  • Weijun He

    (College of Economics and Management, China Three Gorges University, Yichang 443002, China)

  • Liang Yuan

    (College of Economics and Management, China Three Gorges University, Yichang 443002, China)

  • Juqin Shen

    (Business School, Hohai University, Nanjing 211100, China
    College of Agricultural Engineering, Hohai University, Nanjing 211100, China)

  • Min An

    (College of Economics and Management, China Three Gorges University, Yichang 443002, China)

  • Dagmawi Mulugeta Degefu

    (College of Economics and Management, China Three Gorges University, Yichang 443002, China
    Faculty of Engineering and Architectural Science, Ryerson University, Toronto, ON M5B 2K3, Canada)

  • Xin Gao

    (Business School, Hohai University, Nanjing 211100, China)

  • Zhaofang Zhang

    (Business School, Hohai University, Nanjing 211100, China
    College of Economics and Management, China Three Gorges University, Yichang 443002, China)

  • Fuhua Sun

    (Business School, Hohai University, Nanjing 211100, China
    College of Agricultural Engineering, Hohai University, Nanjing 211100, China)

  • Zhongchi Wan

    (College of Economics and Management, China Three Gorges University, Yichang 443002, China)

Abstract

The Beijing–Tianji–Hebei region (BTHR) is economically developed and densely populated, but its water resources are extremely scarce. A clear understanding of the decoupling relationship between water footprint and economic growth is conducive to facilitating and realizing the coordinated development of water resources and economic growth in this region. This study calculated the water footprint and other related indicators of BTHR from 2004 to 2017, and objectively evaluated the utilization of water resources in the region. Then, logarithmic mean divisia index (LMDI) method was applied to study the driving factors that resulted in the change of water footprint and their respective effects. Finally, Tapio decoupling model was used to research the decoupling relationships between water footprint and economic growth, and between the driving factors of water footprint and economic growth. There are three main results in this research. (1) The water utilization efficiency in BTHR continues to improve, and the water footprint shows a gradually increasing trend during the research period, among which the agricultural water footprint accounts for a relatively high proportion. (2) The change of water footprint can be attributed to efficiency effect, economic effect, and population effect. Furthermore, efficiency effect is the decisive factor of water footprint reduction and economic effect is the main factor of water footprint increase, while population effect plays a weak role in promoting the increase in water footprint. (3) The decoupling status between water footprint and economic growth show a weak decoupling in most years, while the status between water footprint intensity and economic growth always remains strong decoupling. Moreover, population size and economic growth always show an expansive coupling state. In sum, it is advisable for policy makers to improve water utilization efficiency, especially agricultural irrigation efficiency, to raise residents’ awareness of water conservation, and increase the import of water-intensive products, so as to alleviate water shortage and realize the coordinated development of water resources and economic growth in BTHR.

Suggested Citation

  • Yang Kong & Weijun He & Liang Yuan & Juqin Shen & Min An & Dagmawi Mulugeta Degefu & Xin Gao & Zhaofang Zhang & Fuhua Sun & Zhongchi Wan, 2019. "Decoupling Analysis of Water Footprint and Economic Growth: A Case Study of Beijing–Tianjin–Hebei Region from 2004 to 2017," IJERPH, MDPI, vol. 16(23), pages 1-20, December.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:23:p:4873-:d:293739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/23/4873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/23/4873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shyama Ratnasiri & Clevo Wilson & Wasantha Athukorala & Maria A. Garcia-Valiñas & Benno Torgler & Robert Gifford, 2018. "Effectiveness of two pricing structures on urban water use and conservation: a quasi-experimental investigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(3), pages 547-560, July.
    2. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    3. De Oliveira-De Jesus, Paulo M., 2019. "Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 516-526.
    4. Dagmawi Mulugeta Degefu & Weijun He & Liang Yuan & Jian Hua Zhao, 2016. "Water Allocation in Transboundary River Basins under Water Scarcity: a Cooperative Bargaining Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4451-4466, September.
    5. Enevoldsen, Martin K. & Ryelund, Anders V. & Andersen, Mikael Skou, 2007. "Decoupling of industrial energy consumption and CO2-emissions in energy-intensive industries in Scandinavia," Energy Economics, Elsevier, vol. 29(4), pages 665-692, July.
    6. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    7. Suyi Kim, 2017. "LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    8. Hussain, M. Iftikhar & Muscolo, Adele & Farooq, Muhammad & Ahmad, Waqar, 2019. "Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments," Agricultural Water Management, Elsevier, vol. 221(C), pages 462-476.
    9. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    2. Montoya, Marco Antonio & Allegretti, Gabriela & Bertussi, Luís Antônio Sleimann & Talamini, Edson, 2023. "Domestic and foreign decoupling of economic growth and water consumption and its driving factors in the Brazilian economy," Ecological Economics, Elsevier, vol. 206(C).
    3. Kong, Yang & He, Weijun & Shen, Juqin & Yuan, Liang & Gao, Xin & Ramsey, Thomas Stephen & Peng, Qingling & Degefu, Dagmawi Mulugeta & Sun, Fuhua, 2023. "Adaptability analysis of water pollution and advanced industrial structure in Jiangsu Province, China," Ecological Modelling, Elsevier, vol. 481(C).
    4. Liang Yuan & Xia Wu & Weijun He & Yang Kong & Thomas Stephen Ramsey & Dagmawi Mulugeta Degefu, 2022. "A multi-weight fuzzy Methodological Framework for Allocating Coalition Payoffs of Joint Water Environment Governance in Transboundary River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3367-3384, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhaojing & Jiang, Qingzhe & Dong, Kangyin & Mubarik, Muhammad Shujaat & Dong, Xiucheng, 2020. "Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 147(C).
    2. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    3. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    4. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    5. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    6. Junghwan Lee & Jinsoo Kim, 2021. "A Decomposition Analysis of the Korean Manufacturing Sector: Monetary vs. Physical Outputs," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    7. Viktor Koval & Viktoriia Khaustova & Stella Lippolis & Olha Ilyash & Tetiana Salashenko & Piotr Olczak, 2023. "Fundamental Shifts in the EU’s Electric Power Sector Development: LMDI Decomposition Analysis," Energies, MDPI, vol. 16(14), pages 1-22, July.
    8. Andreoni, Valeria, 2022. "Drivers of coal consumption changes: A decomposition analysis for Chinese regions," Energy, Elsevier, vol. 242(C).
    9. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    10. Jiyong Park & Taeyoung Jin & Sungin Lee & Jongroul Woo, 2021. "Industrial Electrification and Efficiency: Decomposition Evidence from the Korean Industrial Sector," Energies, MDPI, vol. 14(16), pages 1-18, August.
    11. Gideon Nkam Taka & Ta Thi Huong & Izhar Hussain Shah & Hung-Suck Park, 2020. "Determinants of Energy-Based CO 2 Emissions in Ethiopia: A Decomposition Analysis from 1990 to 2017," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    12. Jingyuan Li & Jinhua Cheng & Beidi Diao & Yaqi Wu & Peiqi Hu & Shurui Jiang, 2021. "Social and Economic Factors of Industrial Carbon Dioxide in China: From the Perspective of Spatiotemporal Transition," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    13. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    14. Juan David Rivera-Niquepa & Daniela Rojas-Lozano & Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2022. "Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    15. Li, Aijun & Zhou, Dinglin & Chen, Guoshi & Liu, Yuhao & Long, Yan, 2020. "Multi-region comparisons of energy-related CO2 emissions and production water use during energy development in northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 940-961.
    16. Jun Yang & Yongmei Miao & Yunfan Li & Yiwen Li & Xiaoxue Ma & Shichun Xu & Shuxiao Wang, 2019. "Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    17. Liu, Hong & Wang, Chang & Tian, Meiyu & Wen, Fenghua, 2019. "Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015," Energy, Elsevier, vol. 171(C), pages 1139-1149.
    18. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposing the decoupling of CO2 emissions and economic growth in Brazil," Ecological Economics, Elsevier, vol. 70(8), pages 1459-1469, June.
    19. Zhao, Xingrong & Zhang, Xi & Shao, Shuai, 2016. "Decoupling CO2 emissions and industrial growth in China over 1993–2013: The role of investment," Energy Economics, Elsevier, vol. 60(C), pages 275-292.
    20. Gen Li & Shihong Zeng & Tengfei Li & Qiao Peng & Muhammad Irfan, 2023. "Analysing the Effect of Energy Intensity on Carbon Emission Reduction in Beijing," IJERPH, MDPI, vol. 20(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:23:p:4873-:d:293739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.