IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i10p355-d1488740.html
   My bibliography  Save this article

Multi-User Optimal Load Scheduling of Different Objectives Combined with Multi-Criteria Decision Making for Smart Grid

Author

Listed:
  • Yaarob Al-Nidawi

    (Department of Computer Engineering, Mustansiriyah University, Baghdad 14022, Iraq)

  • Haider Tarish Haider

    (Department of Computer Engineering, Mustansiriyah University, Baghdad 14022, Iraq)

  • Dhiaa Halboot Muhsen

    (Department of Computer Engineering, Mustansiriyah University, Baghdad 14022, Iraq)

  • Ghadeer Ghazi Shayea

    (College of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad 10001, Iraq)

Abstract

Load balancing between required power demand and the available generation capacity is the main task of demand response for a smart grid. Matching between the objectives of users and utilities is the main gap that should be addressed in the demand response context. In this paper, a multi-user optimal load scheduling is proposed to benefit both utility companies and users. Different objectives are considered to form a multi-objective artificial hummingbird algorithm (MAHA). The cost of energy consumption, peak of load, and user inconvenience are the main objectives considered in this work. A hybrid multi-criteria decision making method is considered to select the dominance solutions. This approach is based on the removal effects of criteria (MERECs) and is utilized for deriving appropriate weights of various criteria. Next, the Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR) method is used to find the best solution of load scheduling from a set of Pareto front solutions produced by MAHA. Multiple pricing schemes are applied in this work, namely the time of use (ToU) and adaptive consumption level pricing scheme (ACLPS), to test the proposed system with regards to different pricing rates. Furthermore, non-cooperative and cooperative users’ working schemes are considered to overcome the issue of making a new peak load time through shifting the user load from the peak to off-peak period to realize minimum energy cost. The results demonstrate 81% cost savings for the proposed method with the cooperative mode while using ACLPS and 40% savings regarding ToU. Furthermore, the peak saving for the same mode of operation provides about 68% and 64% for ACLPs and ToU, respectively. The finding of this work has been validated against other related contributions to examine the significance of the proposed technique. The analyses in this research have concluded that the presented approach has realized a remarkable saving for the peak power intervals and energy cost while maintaining an acceptable range of the customer inconvenience level.

Suggested Citation

  • Yaarob Al-Nidawi & Haider Tarish Haider & Dhiaa Halboot Muhsen & Ghadeer Ghazi Shayea, 2024. "Multi-User Optimal Load Scheduling of Different Objectives Combined with Multi-Criteria Decision Making for Smart Grid," Future Internet, MDPI, vol. 16(10), pages 1-23, September.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:10:p:355-:d:1488740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/10/355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/10/355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).
    2. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    3. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    2. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    3. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    4. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    5. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    6. Turki Alsuwian & Aiman Shahid Butt & Arslan Ahmed Amin, 2022. "Smart Grid Cyber Security Enhancement: Challenges and Solutions—A Review," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    7. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    8. Wabukala, Benard M. & Bergland, Olvar & Mukisa, Nicholas & Adaramola, Muyiwa S. & Watundu, Susan & Orobia, Laura A. & Rudaheranwa, Nichodemus, 2024. "Electricity security in Uganda: Measurement and policy priorities," Utilities Policy, Elsevier, vol. 91(C).
    9. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    10. Abbas Keramati & Fatemeh Shapouri, 2016. "Multidimensional appraisal of customer relationship management: integrating balanced scorecard and multi criteria decision making approaches," Information Systems and e-Business Management, Springer, vol. 14(2), pages 217-251, May.
    11. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    12. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    13. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    14. Khaled Alshehri & Mohadese Basirati & Devin Sapsford & Michael Harbottle & Peter Cleall, 2024. "Nature-Based Secondary Resource Recovery under Climate Change Uncertainty: A Robust Multi-Objective Optimisation Methodology," Sustainability, MDPI, vol. 16(16), pages 1-27, August.
    15. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    16. Jing Zhang & Xinglong Feng & Aixiang Wu & Haiyong Cheng & Zhengrong Li & Shaoyong Wang & Wei Sun & Chong Chen, 2025. "Critical early warning of underground debris flows in mines based on rainfall–collapse characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 423-445, January.
    17. Alamoodi, A.H. & Zaidan, B.B. & Zaidan, A.A. & Albahri, O.S. & Chen, Juliana & Chyad, M.A. & Garfan, Salem & Aleesa, A.M., 2021. "Machine learning-based imputation soft computing approach for large missing scale and non-reference data imputation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    18. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    19. Sirirat Sae Lim & Hong Ngoc Nguyen & Chia-Li Lin, 2022. "Exploring the Development Strategies of Science Parks Using the Hybrid MCDM Approach," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    20. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:10:p:355-:d:1488740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.