IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i4p62-d1778278.html
   My bibliography  Save this article

Forecasting the U.S. Renewable-Energy Mix with an ALR-BDARMA Compositional Time-Series Framework

Author

Listed:
  • Harrison Katz

    (Forecasting, Data Science, Airbnb, San Francisco, CA 94101, USA)

  • Thomas Maierhofer

    (Department of Statistics and Data Science, University of California, Los Angeles, CA 90095, USA)

Abstract

Accurate forecasts of the U.S. renewable energy consumption mix are essential for planning transmission upgrades, sizing storage, and setting balancing market rules. We introduce a Bayesian Dirichlet ARMA model (BDARMA) tailored to monthly shares of hydro, geothermal, solar, wind, wood, municipal waste, and biofuels from January 2010 through January 2025. The mean vector is modeled with a parsimonious VAR(2) in additive log ratio space, while the Dirichlet concentration parameter follows an intercept plus five Fourier harmonics, allowing for seasonal widening and narrowing of predictive dispersion. Forecast performance is assessed with a 61-split rolling origin experiment that issues twelve month density forecasts from January 2019 to January 2024. Compared with three alternatives (a Gaussian VAR(2) fitted in transform space, a seasonal naive approach that repeats last year’s proportions, and a drift-free ALR random walk), BDARMA lowers the mean continuous ranked probability score by 15 to 60 percent, achieves componentwise 90 percent interval coverage near nominal, and maintains point accuracy (Aitchison RMSE) on par with the Gaussian VAR through eight months and within 0.02 units afterward. These results highlight BDARMA’s ability to deliver sharp and well-calibrated probabilistic forecasts for multivariate renewable energy shares without sacrificing point precision.

Suggested Citation

  • Harrison Katz & Thomas Maierhofer, 2025. "Forecasting the U.S. Renewable-Energy Mix with an ALR-BDARMA Compositional Time-Series Framework," Forecasting, MDPI, vol. 7(4), pages 1-16, October.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:4:p:62-:d:1778278
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/4/62/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/4/62/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pfaff, Bernhard, 2008. "VAR, SVAR and SVEC Models: Implementation Within R Package vars," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i04).
    2. Joanna Morais & Christine Thomas-Agnan & Michel Simioni, 2018. "Using compositional and Dirichlet models for market share regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(9), pages 1670-1689, July.
    3. Jie Ma & Amos Oppong & Kingsley Nketia Acheampong & Lucille Aba Abruquah, 2018. "Forecasting Renewable Energy Consumption under Zero Assumptions," Sustainability, MDPI, vol. 10(3), pages 1-17, February.
    4. Harris, Tyler M. & Devkota, Jay P. & Khanna, Vikas & Eranki, Pragnya L. & Landis, Amy E., 2018. "Logistic growth curve modeling of US energy production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 46-57.
    5. Xinping Xiao & Xue Li, 2023. "A novel compositional data model for predicting the energy consumption structures of Europe, Japan, and China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11673-11698, October.
    6. Harrison Katz & Liz Medina & Robert E. Weiss, 2025. "Sensitivity Analysis of Priors in the Bayesian Dirichlet Auto-Regressive Moving Average Model," Forecasting, MDPI, vol. 7(3), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    2. Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018. "Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks," Risks, MDPI, vol. 6(1), pages 1-20, March.
    3. Mitch Kunce, 2023. "Age Cohort Affects on U.S. State-Level Alcohol Consumption Shares: Insights Using Attraction CODA," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 12(3), pages 1-1.
    4. Bruns, Stephan B. & König, Johannes & Stern, David I., 2019. "Replication and robustness analysis of ‘energy and economic growth in the USA: A multivariate approach’," Energy Economics, Elsevier, vol. 82(C), pages 100-113.
    5. Raja Ben Hajria & Salah Khardani & Hamdi Raïssi, 2017. "Testing the lag length of vector autoregressive models: A power comparison between portmanteau and Lagrange multiplier tests," Working Papers 2017-03, Escuela de Negocios y Economía, Pontificia Universidad Católica de Valparaíso.
    6. T. H. A. Nguyen & T. Laurent & C. Thomas-Agnan & A. Ruiz-Gazen, 2022. "Analyzing the impacts of socio-economic factors on French departmental elections with CoDa methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(5), pages 1235-1251, April.
    7. João Sousa Andrade & Adelaide Duarte & Marta Simões, 2011. "Inequality and Growth in Portugal: a time series analysis," GEMF Working Papers 2011-11, GEMF, Faculty of Economics, University of Coimbra.
    8. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    9. Accolley, Delali, 2018. "Accounting for Busines Cycles in Canada: II. The Role of Money," MPRA Paper 85481, University Library of Munich, Germany.
    10. Shakina, Elena & Parshakov, Petr & Alsufiev, Artem, 2021. "Rethinking the corporate digital divide: The complementarity of technologies and the demand for digital skills," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    11. Morais, Joanna & Thomas-Agnan, Christine & Simioni, Michel, 2018. "Impact of advertizing on brand’s market-shares in the automobile market:: a multi-channel attraction model with competition and carry-over effects," TSE Working Papers 18-878, Toulouse School of Economics (TSE).
    12. Joanna Morais & Christine Thomas-Agnan & Michel Simioni, 2017. "Interpretation of explanatory variables impacts in compositional regression models," Working Papers hal-01563362, HAL.
    13. Zhu, Changbo & Müller, Hans-Georg, 2024. "Spherical autoregressive models, with application to distributional and compositional time series," Journal of Econometrics, Elsevier, vol. 239(2).
    14. Yeager, Elizabeth A. & Featherstone, Allen M., 2011. "Impact of Changes in Energy Input Prices on Ethanol Importation and Prices," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 29(2).
    15. Basellini, Ugofilippo & Kjærgaard, Søren & Camarda, Carlo Giovanni, 2020. "An age-at-death distribution approach to forecast cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 129-143.
    16. Mitali Sarkar & Sungjun Kim & Jihed Jemai & Baishakhi Ganguly & Biswajit Sarkar, 2019. "An Application of Time-Dependent Holding Costs and System Reliability in a Multi-Item Sustainable Economic Energy Efficient Reliable Manufacturing System," Energies, MDPI, vol. 12(15), pages 1-19, July.
    17. Ibrahim, Omar, 2021. "Measuring the Output Effects of Fiscal Policy in Egypt: A Disaggregated Structural VAR Analysis," MPRA Paper 110962, University Library of Munich, Germany.
    18. Dimiter Toshkov, 2011. "Public opinion and policy output in the European Union: A lost relationship," European Union Politics, , vol. 12(2), pages 169-191, June.
    19. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.
    20. A. Ntamjokouen & S. Haberman & G. Consigli, 2017. "Projecting the long run relationship of Multi-population life expectancy by race," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(2), pages 1-3.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:4:p:62-:d:1778278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.