IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02055155.html
   My bibliography  Save this paper

Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks

Author

Listed:
  • Thierry Moudiki

    (LSAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Frédéric Planchet

    (LSAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Areski Cousin

    (LSAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon, IRMA - Institut de Recherche Mathématique Avancée - UNISTRA - Université de Strasbourg - CNRS - Centre National de la Recherche Scientifique)

Abstract

We are interested in obtaining forecasts for multiple time series, by taking into account the potential nonlinear relationships between their observations. For this purpose, we use a specific type of regression model on an augmented dataset of lagged time series. Our model is inspired by dynamic regression models ( Pankratz 2012 ), with the response variable’s lags included as predictors, and is known as Random Vector Functional Link (RVFL) neural networks. The RVFL neural networks have been successfully applied in the past, to solving regression and classification problems. The novelty of our approach is to apply an RVFL model to multivariate time series, under two separate regularization constraints on the regression parameters.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018. "Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks," Post-Print hal-02055155, HAL.
  • Handle: RePEc:hal:journl:hal-02055155
    DOI: 10.3390/risks6010022
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016. "Nonlinear forecasting with many predictors using kernel ridge regression," International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
    2. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    3. Pfaff, Bernhard, 2008. "VAR, SVAR and SVEC Models: Implementation Within R Package vars," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i04).
    4. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    5. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    6. Christoph Bergmeir & Rob J Hyndman & Bonsoo Koo, 2015. "A Note on the Validity of Cross-Validation for Evaluating Time Series Prediction," Monash Econometrics and Business Statistics Working Papers 10/15, Monash University, Department of Econometrics and Business Statistics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Functional Autoregression for Sparsely Sampled Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 97-109, January.
    2. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    3. Lily Y. Liu, 2017. "Estimating Loss Given Default from CDS under Weak Identification," Supervisory Research and Analysis Working Papers RPA 17-1, Federal Reserve Bank of Boston.
    4. Detlefsen, Kai & Härdle, Wolfgang Karl, 2006. "Forecasting the term structure of variance swaps," SFB 649 Discussion Papers 2006-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    6. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    7. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
    8. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    9. João Frois Caldeira & Rangan Gupta & Muhammad Tahir Suleman & Hudson S. Torrent, 2021. "Forecasting the Term Structure of Interest Rates of the BRICS: Evidence from a Nonparametric Functional Data Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4312-4329, December.
    10. Adam Traczyk, 2013. "Financial integration and the term structure of interest rates," Empirical Economics, Springer, vol. 45(3), pages 1267-1305, December.
    11. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    12. Shigenori Shiratsuka, 2025. "Monetary Policy Effectiveness under the Ultra‐Low Interest Rate Environment: Evidence from Yield Curve Dynamics in Japan," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 87(1), pages 98-121, February.
    13. Hong, Zhiwu & Niu, Linlin & Zhang, Chen, 2022. "Affine arbitrage-free yield net models with application to the euro debt crisis," Journal of Econometrics, Elsevier, vol. 230(1), pages 201-220.
    14. Ioannis A. Venetis & Avgoustinos Ladas, 2023. "Co-movement and global factors in sovereign bond yields," Bulletin of Applied Economics, Risk Market Journals, vol. 10(2), pages 17-45.
    15. Mohamed Amine Boutabba & Yves Rannou, 2020. "Investor strategies and Liquidity Premia in the European Green Bond market," Post-Print hal-02544451, HAL.
    16. Lauren Stagnol, 2017. "Introducing global term structure in a risk parity framework," Working Papers hal-04141648, HAL.
    17. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    18. Kaya, Huseyin, 2013. "Forecasting the yield curve and the role of macroeconomic information in Turkey," Economic Modelling, Elsevier, vol. 33(C), pages 1-7.
    19. Asia Aman, 2019. "Are CDS Spreads Sensitive to the Term Structure of the Yield Curve? A Sector-Wise Analysis under Various Market Conditions," JRFM, MDPI, vol. 12(4), pages 1-13, September.
    20. Gauthier, Geneviève & Simonato, Jean-Guy, 2012. "Linearized Nelson–Siegel and Svensson models for the estimation of spot interest rates," European Journal of Operational Research, Elsevier, vol. 219(2), pages 442-451.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02055155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.