IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i12p7955-7993d42829.html
   My bibliography  Save this article

U.S. Energy Transitions 1780–2010

Author

Listed:
  • Peter A. O'Connor

    (Department of Earth and Environment, Boston University, 685 Commonwealth Avenue, Boston, MA 02215, USA)

  • Cutler J. Cleveland

    (Department of Earth and Environment, Boston University, 685 Commonwealth Avenue, Boston, MA 02215, USA)

Abstract

Economic and social factors compel large-scale changes in energy systems. An ongoing transition in the United States is driven by environmental concerns, changing patterns of energy end-use, constraints on petroleum supply. Analysis of prior transitions shows that energy intensity in the U.S. from 1820 to 2010 features a declining trend when traditional energy is included, in contrast to the “inverted U-curve” seen when only commercial energy is considered. This analysis quantifies use of human and animal muscle power, wind and water power, biomass, harvested ice, fossil fuels, and nuclear power, with some consumption series extending back to 1780. The analysis reaffirms the importance of innovation in energy conversion technologies in energy transitions. An increase in energy intensity in the early 20th century is explained by diminishing returns to pre-electric manufacturing systems, which produced a transformation in manufacturing. In comparison to similar studies for other countries, the U.S. has generally higher energy intensity.

Suggested Citation

  • Peter A. O'Connor & Cutler J. Cleveland, 2014. "U.S. Energy Transitions 1780–2010," Energies, MDPI, vol. 7(12), pages 1-39, November.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:12:p:7955-7993:d:42829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/12/7955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/12/7955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fouquet, Roger, 2011. "Long run trends in energy-related external costs," Ecological Economics, Elsevier, vol. 70(12), pages 2380-2389.
    2. Roger Fouquet & Peter J.G. Pearson, 2006. "Seven Centuries of Energy Services: The Price and Use of Light in the United Kingdom (1300-2000)," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 139-178.
    3. Devine, Warren D., 1983. "From Shafts to Wires: Historical Perspective on Electrification," The Journal of Economic History, Cambridge University Press, vol. 43(2), pages 347-372, June.
    4. Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
    5. Cleveland, Cutler J. & Kaufmann, Robert K. & Stern, David I., 2000. "Aggregation and the role of energy in the economy," Ecological Economics, Elsevier, vol. 32(2), pages 301-317, February.
    6. Turnheim, Bruno & Geels, Frank W., 2012. "Regime destabilisation as the flipside of energy transitions: Lessons from the history of the British coal industry (1913–1997)," Energy Policy, Elsevier, vol. 50(C), pages 35-49.
    7. Allen,Robert C., 2009. "The British Industrial Revolution in Global Perspective," Cambridge Books, Cambridge University Press, number 9780521868273, September.
    8. Gales, Ben & Kander, Astrid & Malanima, Paolo & Rubio, Mar, 2007. "North versus South: Energy transition and energy intensity in Europe over 200 years," European Review of Economic History, Cambridge University Press, vol. 11(2), pages 219-253, August.
    9. Wrigley,E. A., 2010. "Energy and the English Industrial Revolution," Cambridge Books, Cambridge University Press, number 9780521766937, October.
    10. Humphrey, William S. & Stanislaw, Joe, 1979. "Economic growth and energy consumption in the UK, 1700-1975," Energy Policy, Elsevier, vol. 7(1), pages 29-42, March.
    11. Kaufmann, Robert K., 1992. "A biophysical analysis of the energy/real GDP ratio: implications for substitution and technical change," Ecological Economics, Elsevier, vol. 6(1), pages 35-56, July.
    12. Roger Fouquet, 2008. "Heat, Power and Light," Books, Edward Elgar Publishing, number 4061.
    13. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    14. Cleveland, Cutler J., 2005. "Net energy from the extraction of oil and gas in the United States," Energy, Elsevier, vol. 30(5), pages 769-782.
    15. Raugei, Marco & Fullana-i-Palmer, Pere & Fthenakis, Vasilis, 2012. "The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles," Energy Policy, Elsevier, vol. 45(C), pages 576-582.
    16. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    17. Wrigley,E. A., 2010. "Energy and the English Industrial Revolution," Cambridge Books, Cambridge University Press, number 9780521131858, October.
    18. Webb, Michael & Pearce, David, 1975. "The economics of energy analysis," Energy Policy, Elsevier, vol. 3(4), pages 318-331, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    2. Agovino, Massimiliano & Bartoletto, Silvana & Garofalo, Antonio, 2019. "Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000)," Energy Economics, Elsevier, vol. 82(C), pages 114-134.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fouquet, Roger, 2016. "Lessons from energy history for climate policy: technological change, demand and economic development," LSE Research Online Documents on Economics 67785, London School of Economics and Political Science, LSE Library.
    2. Agovino, Massimiliano & Bartoletto, Silvana & Garofalo, Antonio, 2019. "Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000)," Energy Economics, Elsevier, vol. 82(C), pages 114-134.
    3. Roger Fouquet, 2015. "Lessons from energy history for climate policy," GRI Working Papers 209, Grantham Research Institute on Climate Change and the Environment.
    4. Fouquet, Roger, 2012. "The demand for environmental quality in driving transitions to low-polluting energy sources," Energy Policy, Elsevier, vol. 50(C), pages 138-149.
    5. David I. Stern and Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    6. Ravshonbek Otojanov & Roger Fouquet & Brigitte Granville, 2023. "Factor prices and induced technical change in the industrial revolution," Economic History Review, Economic History Society, vol. 76(2), pages 599-623, May.
    7. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    8. Kander, Astrid & Stern, David I., 2014. "Economic growth and the transition from traditional to modern energy in Sweden," Energy Economics, Elsevier, vol. 46(C), pages 56-65.
    9. van de Ven, Dirk Jan & Fouquet, Roger, 2017. "Historical energy price shocks and their changing effects on the economy," Energy Economics, Elsevier, vol. 62(C), pages 204-216.
    10. Paolo Malanima, 2020. "The limiting factor: energy, growth, and divergence, 1820–1913," Economic History Review, Economic History Society, vol. 73(2), pages 486-512, May.
    11. Richard Green & Nicholas Vasilakos, 2012. "Storing Wind for a Rainy Day: What Kind of Electricity Does Denmark Export?," The Energy Journal, , vol. 33(3), pages 1-22, July.
    12. Sofia Teives Henriques & Paul Sharp, 2021. "Without coal in the age of steam and dams in the age of electricity: an explanation for the failure of Portugal to industrialize before the Second World War," European Review of Economic History, European Historical Economics Society, vol. 25(1), pages 85-105.
    13. Moreno-Cruz, Juan & Taylor, M. Scott, 2020. "Food, Fuel and the Domesday Economy," European Economic Review, Elsevier, vol. 128(C).
    14. Sofia Teives Henriques & Paul Sharp, 2016. "The Danish agricultural revolution in an energy perspective: a case of development with few domestic energy sources," Economic History Review, Economic History Society, vol. 69(3), pages 844-869, August.
    15. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    16. Pearson, Peter J.G. & Foxon, Timothy J., 2012. "A low carbon industrial revolution? Insights and challenges from past technological and economic transformations," Energy Policy, Elsevier, vol. 50(C), pages 117-127.
    17. John Foster, 2015. "Energy, Knowledge and Economic Growth," Economic Complexity and Evolution, in: Andreas Pyka & John Foster (ed.), The Evolution of Economic and Innovation Systems, edition 127, pages 9-39, Springer.
    18. Fouquet, Roger, 2010. "The slow search for solutions: Lessons from historical energy transitions by sector and service," Energy Policy, Elsevier, vol. 38(11), pages 6586-6596, November.
    19. Wouter Ryckbosch & Wout Saelens, 2023. "Fuelling the urban economy: A comparative study of energy in the Low Countries, 1600–1850," Economic History Review, Economic History Society, vol. 76(1), pages 221-256, February.
    20. Millot, Ariane & Maïzi, Nadia, 2021. "From open-loop energy revolutions to closed-loop transition: What drives carbon neutrality?," Technological Forecasting and Social Change, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:12:p:7955-7993:d:42829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.