IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i10p3928-3947d20663.html
   My bibliography  Save this article

Some Chemical Compositional Changes in Miscanthus and White Oak Sawdust Samples during Torrefaction

Author

Listed:
  • Jaya Shankar Tumuluru

    () (Idaho National Laboratory, Energy Systems and Technologies Directorate, Biofuels and Renewable Energies Department, P.O. Box 1625, Idaho Falls, ID 83415-2025, USA)

  • Richard D. Boardman

    () (Idaho National Laboratory, Energy Systems and Technologies Directorate, Biofuels and Renewable Energies Department, P.O. Box 1625, Idaho Falls, ID 83415-2025, USA)

  • Christopher T. Wright

    () (Idaho National Laboratory, Energy Systems and Technologies Directorate, Biofuels and Renewable Energies Department, P.O. Box 1625, Idaho Falls, ID 83415-2025, USA)

  • J. Richard Hess

    () (Idaho National Laboratory, Energy Systems and Technologies Directorate, Biofuels and Renewable Energies Department, P.O. Box 1625, Idaho Falls, ID 83415-2025, USA)

Abstract

Torrefaction tests on miscanthus and white oak sawdust were conducted in a bubbling sand bed reactor to see the effect of temperature and residence time on the chemical composition. Process conditions for miscanthus and white oak sawdust were 250–350 °C for 30–120 min and 220–270 °C for 30 min, respectively. Torrefaction of miscanthus at 250 °C and a residence time of 30 min resulted in a significant decrease in moisture—about 82.68%—but the other components—hydrogen, nitrogen, sulfur, and volatiles—changed only marginally. Increasing torrefaction temperatures to 350 °C with a residence time of 120 min further reduced the moisture content to 0.54%, with a significant decrease in the hydrogen, nitrogen, and volatiles by 58.29%, 14.28%, and 70.45%, respectively. Regression equations developed for the moisture, hydrogen, nitrogen, and volatile content of the samples with respect to torrefaction temperature and time have adequately described the changes in chemical composition based on R 2 values of >0.82. Surface plots based on the regression equation indicate that torrefaction temperatures of 280–350 °C with residence times of 30–120 min can help reduce moisture, nitrogen, and volatile content from 1.13% to 0.6%, 0.27% to 0.23%, and 79% to 23%, with respect to initial values. Trends of chemical compositional changes in white oak sawdust are similar to miscanthus. Torrefaction temperatures of 270 °C and a 30 min residence time reduced the moisture, volatiles, hydrogen, and nitrogen content by about 79%, 17.88%, 20%, and 5.88%, respectively, whereas the carbon content increased by about 3.5%.

Suggested Citation

  • Jaya Shankar Tumuluru & Richard D. Boardman & Christopher T. Wright & J. Richard Hess, 2012. "Some Chemical Compositional Changes in Miscanthus and White Oak Sawdust Samples during Torrefaction," Energies, MDPI, Open Access Journal, vol. 5(10), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:10:p:3928-3947:d:20663
    as

    Download full text from publisher

    File URL: http://www.mdpi.com/1996-1073/5/10/3928/pdf
    Download Restriction: no

    File URL: http://www.mdpi.com/1996-1073/5/10/3928/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economics Reports 34075, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaya Shankar Tumuluru & C. Jim Lim & Xiaotao T. Bi & Xingya Kuang & Staffan Melin & Fahimeh Yazdanpanah & Shahab Sokhansanj, 2015. "Analysis on Storage Off-Gas Emissions from Woody, Herbaceous, and Torrefied Biomass," Energies, MDPI, Open Access Journal, vol. 8(3), pages 1-15, March.
    2. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.

    More about this item

    Keywords

    miscanthus; white oak sawdust; torrefaction; temperature; time; chemical composition;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:10:p:3928-3947:d:20663. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: http://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.