IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2337-d1648713.html
   My bibliography  Save this article

Thermal Behavior and Gas Emissions of Biomass and Industrial Wastes as Alternative Fuels in Cement Production: A TGA-DSC and TGA-MS Approach

Author

Listed:
  • Ofelia Rivera Sasso

    (Centro de Investigacion en Materiales Avanzados, S.C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico)

  • Caleb Carreño Gallardo

    (Centro de Investigacion en Materiales Avanzados, S.C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico)

  • Jose Ernesto Ledezma Sillas

    (Centro de Investigacion en Materiales Avanzados, S.C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico)

  • Francisco C. Robles Hernandez

    (Department of Mechanical Engineering Technology, Advanced Manufacturing Institute, University of Houston, Houston, TX 77204, USA
    Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA)

  • Omar Farid Ojeda Farias

    (GCC, Vicente Suarez y Sexta s/n, Zona Industrial Nombre de Dios, Chihuahua 31105, Mexico)

  • Carolina Prieto Gomez

    (GCC, Vicente Suarez y Sexta s/n, Zona Industrial Nombre de Dios, Chihuahua 31105, Mexico)

  • Jose Martin Herrera Ramirez

    (Centro de Investigacion en Materiales Avanzados, S.C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico)

Abstract

The cement industry contributes approximately 7% of global anthropogenic CO 2 emissions, primarily through energy-intensive clinker production. This study evaluates the thermal behavior and gas emissions of seven waste materials (sawdust, pecan nutshell, wind blade waste, industrial hose waste, tire-derived fuel, plastic waste, and automotive shredder residue) as alternative fuels for cement manufacturing, motivated by the limited information available regarding their performance and environmental impact, with bituminous coal used as a reference. Thermogravimetric analysis and differential scanning calorimetry (TGA-DSC) were used to quantify mass loss and energy changes, while TGA coupled with mass spectrometry (TGA-MS) was used to identify volatile compounds released during thermal degradation. Both TGA-DSC and TGA-MS were conducted under oxidative conditions. The analysis revealed that these waste materials can generate up to 70% of coal’s energy, with combustion primarily occurring between 200 °C and 600 °C. The thermal profiles demonstrated that these materials can effectively replace fossil fuels without releasing harmful toxic gases like HCl, dioxins, or furans. Combustion predominantly emitted CO 2 and H 2 O, with only trace volatile organic compounds such as C 3 H 3 and COOH. The findings highlight the potential of alternative fuels to provide substantial energy for cement production while addressing waste management challenges and reducing the industry’s environmental impact through innovative resource valorization.

Suggested Citation

  • Ofelia Rivera Sasso & Caleb Carreño Gallardo & Jose Ernesto Ledezma Sillas & Francisco C. Robles Hernandez & Omar Farid Ojeda Farias & Carolina Prieto Gomez & Jose Martin Herrera Ramirez, 2025. "Thermal Behavior and Gas Emissions of Biomass and Industrial Wastes as Alternative Fuels in Cement Production: A TGA-DSC and TGA-MS Approach," Energies, MDPI, vol. 18(9), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2337-:d:1648713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2337/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2337/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azad Rahman & Mohammad G. Rasul & M.M.K. Khan & Subhash C. Sharma, 2017. "Assessment of Energy Performance and Emission Control Using Alternative Fuels in Cement Industry through a Process Model," Energies, MDPI, vol. 10(12), pages 1-17, December.
    2. Mariusz Niekurzak & Wojciech Lewicki & Jacek Wróbel, 2024. "Efficiency Assessment of the Production of Alternative Fuels of High Usable Quality within the Circular Economy: An Example from the Cement Sector," Sustainability, MDPI, vol. 16(20), pages 1-19, October.
    3. Jayaraman, Kandasamy & Kok, Mustafa Versan & Gokalp, Iskender, 2017. "Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends," Renewable Energy, Elsevier, vol. 101(C), pages 293-300.
    4. Ofelia Rivera Sasso & Caleb Carreño Gallardo & David Martin Soto Castillo & Omar Farid Ojeda Farias & Martin Bojorquez Carrillo & Carolina Prieto Gomez & Jose Martin Herrera Ramirez, 2024. "Valorization of Biomass and Industrial Wastes as Alternative Fuels for Sustainable Cement Production," Clean Technol., MDPI, vol. 6(2), pages 1-12, June.
    5. Essossinam Beguedou & Satyanarayana Narra & Ekua Afrakoma Armoo & Komi Agboka & Mani Kongnine Damgou, 2023. "Alternative Fuels Substitution in Cement Industries for Improved Energy Efficiency and Sustainability," Energies, MDPI, vol. 16(8), pages 1-29, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weng, Jun-Jie & Tian, Zhen-Yu & Liu, Yue-Xi & Pan, Yang & Zhu, Ya-Nan, 2020. "Investigation on the co-combustion mechanism of coal and biomass on a fixed-bed reactor with advanced mass spectrometry," Renewable Energy, Elsevier, vol. 149(C), pages 1068-1076.
    2. Xing Tian & Jian Yang & Zhigang Guo & Qiuwang Wang & Bengt Sunden, 2020. "Numerical Study of Heat Transfer in Gravity-Driven Particle Flow around Tubes with Different Shapes," Energies, MDPI, vol. 13(8), pages 1-15, April.
    3. Ni, Guanhua & Dou, Haoran & Li, Zhao & Zhu, Chuanjie & Sun, Gongshuai & Hu, Xiangming & Wang, Gang & Liu, Yixin & Wang, Zhenyang, 2022. "Study on the combustion characteristics of bituminous coal modified by typical inorganic acids," Energy, Elsevier, vol. 261(PA).
    4. Zhenghui Xu & Xiang Xiao & Ping Fang & Lyumeng Ye & Jianhang Huang & Haiwen Wu & Zijun Tang & Dongyao Chen, 2020. "Comparison of Combustion and Pyrolysis Behavior of the Peanut Shells in Air and N 2 : Kinetics, Thermodynamics and Gas Emissions," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    5. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    6. Wen, Shaoting & Yan, Youping & Liu, Jingyong & Buyukada, Musa & Evrendilek, Fatih, 2019. "Pyrolysis performance, kinetic, thermodynamic, product and joint optimization analyses of incense sticks in N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 141(C), pages 814-827.
    7. Li, Mingda & Luo, Guangqian & Zou, Renjie & Qiu, Wencong & Xiao, Yi & Xu, Guangwen & Yao, Hong, 2025. "Combustion kinetics and ash particles structure analysis of biomass in-situ and cooling char," Energy, Elsevier, vol. 318(C).
    8. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.
    9. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.
    10. Ahmed M. Nassef, 2023. "Improving CO 2 Absorption Using Artificial Intelligence and Modern Optimization for a Sustainable Environment," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    11. Santos, Carolina Monteiro & de Oliveira, Leandro Soares & Alves Rocha, Elém Patrícia & Franca, Adriana Silva, 2020. "Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling," Renewable Energy, Elsevier, vol. 147(P1), pages 1275-1291.
    12. Kubilay Kaptan & Sandra Cunha & José Aguiar, 2024. "A Review: Construction and Demolition Waste as a Novel Source for CO 2 Reduction in Portland Cement Production for Concrete," Sustainability, MDPI, vol. 16(2), pages 1-50, January.
    13. Marcin Jewiarz & Krzysztof Mudryk & Marek Wróbel & Jarosław Frączek & Krzysztof Dziedzic, 2020. "Parameters Affecting RDF-Based Pellet Quality," Energies, MDPI, vol. 13(4), pages 1-17, February.
    14. Sung-Hoon Kang & Yang-Hee Kwon & Juhyuk Moon, 2019. "Quantitative Analysis of CO 2 Uptake and Mechanical Properties of Air Lime-Based Materials," Energies, MDPI, vol. 12(15), pages 1-12, July.
    15. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    16. Kijo-Kleczkowska, Agnieszka & Gnatowski, Adam & Krzywanski, Jaroslaw & Gajek, Marcin & Szumera, Magdalena & Tora, Barbara & Kogut, Krzysztof & Knaś, Krzysztof, 2024. "Experimental research and prediction of heat generation during plastics, coal and biomass waste combustion using thermal analysis methods," Energy, Elsevier, vol. 290(C).
    17. Jinyang Zhang & Guoliang Song & Weijian Song & Hongliang Ding, 2025. "TG-MS Analysis of the Effect of Variations in Coal Particle Size on Combustion Characteristics and Kinetic Parameters," Energies, MDPI, vol. 18(6), pages 1-20, March.
    18. Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
    19. Guo, Feihong & He, Yi & Hassanpour, Ali & Gardy, Jabbar & Zhong, Zhaoping, 2020. "Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal," Energy, Elsevier, vol. 197(C).
    20. Mariusz Niekurzak & Wojciech Lewicki, 2025. "Optimisation of the Production Process of Ironing Refractory Products Using the OEE Indicator as Part of Innovative Solutions for Sustainable Production," Sustainability, MDPI, vol. 17(11), pages 1-27, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2337-:d:1648713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.