IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp1068-1076.html
   My bibliography  Save this article

Investigation on the co-combustion mechanism of coal and biomass on a fixed-bed reactor with advanced mass spectrometry

Author

Listed:
  • Weng, Jun-Jie
  • Tian, Zhen-Yu
  • Liu, Yue-Xi
  • Pan, Yang
  • Zhu, Ya-Nan

Abstract

This study aims to investigate the co-combustion mechanism of coal and corn residue on a fixed-bed reactor at low temperature, the decomposition characteristics were studied by advanced vacuum ultraviolet photoionization mass spectrometry (PI−TOFMS). The mass spectra and evolution profiles of combustion products (from 300 to 800 °C) were measured. As reaction temperature increased, the relative ion intensities of typical combustion products were investigated, and the difference with previous pyrolysis study was also discussed. The results reveal that cellulose and lignin in corn residue is faster to react than hemicellulose. Coal has an influence on the lignin rather than cellulose and hemicellulose of corn residue in blend. Coal has no effect on the production of furfuryl alcohol obtained from coal-corn residue blend. The current study on the co-combustion mechanism is beneficial to optimize the product distribution and improve combustion efficiency.

Suggested Citation

  • Weng, Jun-Jie & Tian, Zhen-Yu & Liu, Yue-Xi & Pan, Yang & Zhu, Ya-Nan, 2020. "Investigation on the co-combustion mechanism of coal and biomass on a fixed-bed reactor with advanced mass spectrometry," Renewable Energy, Elsevier, vol. 149(C), pages 1068-1076.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1068-1076
    DOI: 10.1016/j.renene.2019.10.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119316076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Shannan & Hu, Yamin & Wang, Shuang & He, Zhixia & Qian, Lili & Feng, Yongqiang & Sun, Chaoqun & Liu, Xinlin & Wang, Qian & Hui, Chiwai & Payne, Emmanuel Kobina, 2019. "Investigation on the co-pyrolysis mechanism of seaweed and rice husk with multi-method comprehensive study," Renewable Energy, Elsevier, vol. 132(C), pages 266-277.
    2. Jayaraman, Kandasamy & Kok, Mustafa Versan & Gokalp, Iskender, 2017. "Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends," Renewable Energy, Elsevier, vol. 101(C), pages 293-300.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carolina S. Mergulhão & Yann Fenard & Guillaume Vanhove, 2021. "Is ortho -Cresol a Viable Lignocellulosic Blendstock? A Kinetic Study of Its Co-Oxidation within a Surrogate Fuel," Energies, MDPI, vol. 14(21), pages 1-9, November.
    2. Kuznetsov, G.V. & Malyshev, D. Yu & Syrodoy, S.V. & Gutareva, N. Yu & Purin, M.V. & Kostoreva, Zh. A., 2022. "Justification of the use of forest waste in the power industry as one of the components OF BIO-coal-water suspension fuel," Energy, Elsevier, vol. 239(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni, Guanhua & Dou, Haoran & Li, Zhao & Zhu, Chuanjie & Sun, Gongshuai & Hu, Xiangming & Wang, Gang & Liu, Yixin & Wang, Zhenyang, 2022. "Study on the combustion characteristics of bituminous coal modified by typical inorganic acids," Energy, Elsevier, vol. 261(PA).
    2. Zhenghui Xu & Xiang Xiao & Ping Fang & Lyumeng Ye & Jianhang Huang & Haiwen Wu & Zijun Tang & Dongyao Chen, 2020. "Comparison of Combustion and Pyrolysis Behavior of the Peanut Shells in Air and N 2 : Kinetics, Thermodynamics and Gas Emissions," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    3. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    4. Chen, Zhiyun & Chen, Huashan & Wu, Xieyuan & Zhang, Junhui & Evrendilek, Deniz Eren & Liu, Jingyong & Liang, Guanjie & Li, Weixin, 2021. "Temperature- and heating rate-dependent pyrolysis mechanisms and emissions of Chinese medicine residues and numerical reconstruction and optimization of their non-linear dynamics," Renewable Energy, Elsevier, vol. 164(C), pages 1408-1423.
    5. Wen, Shaoting & Yan, Youping & Liu, Jingyong & Buyukada, Musa & Evrendilek, Fatih, 2019. "Pyrolysis performance, kinetic, thermodynamic, product and joint optimization analyses of incense sticks in N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 141(C), pages 814-827.
    6. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.
    7. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.
    8. Santos, Carolina Monteiro & de Oliveira, Leandro Soares & Alves Rocha, Elém Patrícia & Franca, Adriana Silva, 2020. "Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling," Renewable Energy, Elsevier, vol. 147(P1), pages 1275-1291.
    9. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    10. Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
    11. Guo, Feihong & He, Yi & Hassanpour, Ali & Gardy, Jabbar & Zhong, Zhaoping, 2020. "Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal," Energy, Elsevier, vol. 197(C).
    12. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    13. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    14. Adnan, Muflih A. & Hossain, Mohammad M., 2018. "Gasification of various biomasses including microalgae using CO2 – A thermodynamic study," Renewable Energy, Elsevier, vol. 119(C), pages 598-607.
    15. Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
    16. Badshah, Syed Lal & Shah, Zahir & Francisco Alves, José Luiz & Gomes da Silva, Jean Constantino & Iqbal, Arshad, 2021. "Pyrolysis of the freshwater macroalgae Spirogyra crassa: Evaluating its bioenergy potential using kinetic triplet and thermodynamic parameters," Renewable Energy, Elsevier, vol. 179(C), pages 1169-1178.
    17. Qiu, Shuxing & Zhang, Shengfu & Zhou, Xiaohu & Zhang, Qingyun & Qiu, Guibao & Hu, Meilong & You, Zhixiong & Wen, Liangying & Bai, Chenguang, 2019. "Thermal behavior and organic functional structure of poplar-fat coal blends during co-pyrolysis," Renewable Energy, Elsevier, vol. 136(C), pages 308-316.
    18. Jayaraman, Kandasamy & Kök, Mustafa Versan & Gökalp, Iskender, 2020. "Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach," Energy, Elsevier, vol. 204(C).
    19. Gao, Wenran & Wang, Jinchuan & Akhtar, Asif & Wei, Juntao & Li, Bin & Xu, Deliang & Zhang, Shu & Zhang, Shoujun & Wu, Yinlong, 2023. "Effects of carbonization on the physical properties and combustion behavior of fiberboard sanding dust pellets," Renewable Energy, Elsevier, vol. 212(C), pages 263-273.
    20. Ahmad, Razi & Mohd Ishak, Mohd Azlan & Kasim, Nur Nasulhah & Ismail, Khudzir, 2019. "Properties and thermal analysis of upgraded palm kernel shell and Mukah Balingian coal," Energy, Elsevier, vol. 167(C), pages 538-547.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1068-1076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.