IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1961-d346148.html
   My bibliography  Save this article

Numerical Study of Heat Transfer in Gravity-Driven Particle Flow around Tubes with Different Shapes

Author

Listed:
  • Xing Tian

    (Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China)

  • Jian Yang

    (Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
    Department of Energy Sciences, Lund University, 22100 Lund, Sweden)

  • Zhigang Guo

    (Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China)

  • Qiuwang Wang

    (Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China)

  • Bengt Sunden

    (Department of Energy Sciences, Lund University, 22100 Lund, Sweden)

Abstract

In the present paper, the heat transfer of gravity-driven dense particle flow around five different shapes of tubes is numerically studied using discrete element method (DEM). The velocity vector, particle contact number, particle contact time and heat transfer coefficient of particle flow at different particle zones around the tube are carefully analyzed. The results show that the effect of tube shape on the particle flow at both upstream and downstream regions of different tubes are remarkable. A particle stagnation zone and particle cavity zone are formed at the upstream and downstream regions of all the tubes. Both the stagnation and cavity zones for the circular tube are the largest, and they are the smallest for the elliptical tube. As the particle outlet velocity ( v out ) changes from 0.5 mm/s to 8 mm/s at d p = 1.72 mm/s, when compared with the circular tube, the heat transfer coefficient of particle flow for the elliptical tube and flat elliptical tube can increase by 20.3% and 15.0% on average, respectively. The proper design of the downstream shape of the tube can improve the overall heat transfer performance more efficiently. The heat transfer coefficient will increase as particle diameter decreases.

Suggested Citation

  • Xing Tian & Jian Yang & Zhigang Guo & Qiuwang Wang & Bengt Sunden, 2020. "Numerical Study of Heat Transfer in Gravity-Driven Particle Flow around Tubes with Different Shapes," Energies, MDPI, vol. 13(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1961-:d:346148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1961/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1961/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Ying & Cai, Jiu-ju & Dong, Hui & Feng, Jun-sheng & Liu, Jing-yu, 2019. "Experimental investigation of volumetric exergy transfer coefficient in vertical moving bed for sinter waste heat recovery," Energy, Elsevier, vol. 167(C), pages 428-439.
    2. Hannes Vogtenhuber & Dominik Pernsteiner & René Hofmann, 2019. "Experimental and Numerical Investigations on Heat Transfer of Bare Tubes in a Bubbling Fluidized Bed with Respect to Better Heat Integration in Temperature Swing Adsorption Systems," Energies, MDPI, vol. 12(14), pages 1-26, July.
    3. Shicheng Wang & Chenyi Xu & Wei Liu & Zhichun Liu, 2019. "Numerical Study on Heat Transfer Performance in Packed Bed," Energies, MDPI, vol. 12(3), pages 1-22, January.
    4. Azad Rahman & Mohammad G. Rasul & M.M.K. Khan & Subhash C. Sharma, 2017. "Assessment of Energy Performance and Emission Control Using Alternative Fuels in Cement Industry through a Process Model," Energies, MDPI, vol. 10(12), pages 1-17, December.
    5. Zheng, Bin & Sun, Peng & Liu, Yongqi & Zhao, Qiang, 2018. "Heat transfer of calcined petroleum coke and heat exchange tube for calcined petroleum coke waste heat recovery," Energy, Elsevier, vol. 155(C), pages 56-65.
    6. Won-Ju Lee & Dae-Young Kim & Jae-Hyuk Choi & Ji-Woong Lee & Jun-Soo Kim & Kwangho Son & Min-Jae Ha & Jun Kang, 2019. "Utilization of Petroleum Coke Soot as Energy Storage Material," Energies, MDPI, vol. 12(16), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Xing & Jia, Haonan & Zhang, Jiayue & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2023. "Heat transfer characteristic of particle flow around the out-wall of different geometries," Energy, Elsevier, vol. 280(C).
    2. Baoping Gong & Hao Cheng & Yongjin Feng & Xiaofang Luo & Long Wang & Xiaoyu Wang, 2021. "Effect of Pebble Size Distribution and Wall Effect on Inner Packing Structure and Contact Force Distribution in Tritium Breeder Pebble Bed," Energies, MDPI, vol. 14(2), pages 1-22, January.
    3. Xing Tian & Jian Yang & Zhigang Guo & Qiuwang Wang, 2021. "Numerical Investigation of Gravity-Driven Granular Flow around the Vertical Plate: Effect of Pin-Fin and Oscillation on the Heat Transfer," Energies, MDPI, vol. 14(8), pages 1-14, April.
    4. Yee Van Fan & Zorka Novak Pintarič & Jiří Jaromír Klemeš, 2020. "Emerging Tools for Energy System Design Increasing Economic and Environmental Sustainability," Energies, MDPI, vol. 13(16), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Zhigang & Zhang, Shang & Tian, Xing & Yang, Jian & Wang, Qiuwang, 2020. "Numerical investigation of tube oscillation in gravity-driven granular flow with heat transfer by discrete element method," Energy, Elsevier, vol. 207(C).
    2. Artem A. Medvedev & Daria A. Beldova & Konstantin B. Kalmykov & Alexey V. Kravtsov & Marina A. Tedeeva & Leonid M. Kustov & Sergey F. Dunaev & Alexander L. Kustov, 2022. "Carbon Dioxide Assisted Conversion of Hydrolysis Lignin Catalyzed by Nickel Compounds," Energies, MDPI, vol. 15(18), pages 1-12, September.
    3. Cheng, Zhilong & Tan, Zhoutuo & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2020. "Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Marcin Jewiarz & Krzysztof Mudryk & Marek Wróbel & Jarosław Frączek & Krzysztof Dziedzic, 2020. "Parameters Affecting RDF-Based Pellet Quality," Energies, MDPI, vol. 13(4), pages 1-17, February.
    5. Tian, Xing & Jia, Haonan & Zhang, Jiayue & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2023. "Heat transfer characteristic of particle flow around the out-wall of different geometries," Energy, Elsevier, vol. 280(C).
    6. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Sung-Hoon Kang & Yang-Hee Kwon & Juhyuk Moon, 2019. "Quantitative Analysis of CO 2 Uptake and Mechanical Properties of Air Lime-Based Materials," Energies, MDPI, vol. 12(15), pages 1-12, July.
    8. Junpeng Fu & Jiuju Cai, 2020. "Study of Heat Transfer and the Hydrodynamic Performance of Gas–Solid Heat Transfer in a Vertical Sinter Cooling Bed Using the CFD-Taguchi-Grey Relational Analysis Method," Energies, MDPI, vol. 13(9), pages 1-30, May.
    9. Zhang, Kai & Du, Shiqi & Sun, Peng & Zheng, Bin & Liu, Yongqi & Shen, Yingkai & Chang, RunZe & Han, Xiaobiao, 2021. "The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation," Energy, Elsevier, vol. 225(C).
    10. Jian Yang & Yingxue Hu & Qiuwang Wang, 2019. "Investigation of Effective Thermal Conductivity for Ordered and Randomly Packed Bed with Thermal Resistance Network Method," Energies, MDPI, vol. 12(9), pages 1-14, May.
    11. Xing Tian & Jian Yang & Zhigang Guo & Qiuwang Wang, 2021. "Numerical Investigation of Gravity-Driven Granular Flow around the Vertical Plate: Effect of Pin-Fin and Oscillation on the Heat Transfer," Energies, MDPI, vol. 14(8), pages 1-14, April.
    12. Ana María Castañón & Lluís Sanmiquel & Marc Bascompta & Antonio Vega y de la Fuente & Víctor Contreras & Fernando Gómez-Fernández, 2021. "Used Tires as Fuel in Clinker Production: Economic and Environmental Implications," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
    13. Francesco Calise & Maria Vicidomini & Mário Costa & Qiuwang Wang & Poul Alberg Østergaard & Neven Duić, 2019. "Toward an Efficient and Sustainable Use of Energy in Industries and Cities," Energies, MDPI, vol. 12(16), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1961-:d:346148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.