IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2198-d1642653.html
   My bibliography  Save this article

Cost Breakeven Point of Offshore Wind Energy in Brazil

Author

Listed:
  • Rodrigo Vellardo Guimarães

    (Energy Planning Program (PPE), COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Tecnologia, bloco C, sala 211, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-914, Brazil
    Energy Research Company (EPE), Praça Pio X, 54—Centro, Rio de Janeiro 20091-040, Brazil)

  • Milad Shadman

    (Offshore Renewable Energy Group (GERO), Ocean Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil)

  • Saulo Ribeiro Silva

    (Energy Research Company (EPE), Praça Pio X, 54—Centro, Rio de Janeiro 20091-040, Brazil)

  • Segen F. Estefen

    (Offshore Renewable Energy Group (GERO), Ocean Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil
    National Institute for Ocean Research (INPO), 4th Floor, Building 3, Rua Aloísio Teixeira, 278—Ilha da Cidade Universitária, Rio de Janeiro 21941-850, Brazil)

  • Maurício Tiomno Tolmasquim

    (Energy Planning Program (PPE), COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Tecnologia, bloco C, sala 211, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-914, Brazil
    National Institute for Ocean Research (INPO), 4th Floor, Building 3, Rua Aloísio Teixeira, 278—Ilha da Cidade Universitária, Rio de Janeiro 21941-850, Brazil)

  • Amaro Olimpio Pereira

    (Energy Planning Program (PPE), COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Tecnologia, bloco C, sala 211, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-914, Brazil)

Abstract

Brazil has abundant natural resources and a largely renewable electricity matrix, with about 90% of its capacity from clean sources. Despite strong offshore wind potential, its economic viability remains uncertain due to the lack of a domestic supply chain and reliance on international cost estimates. This study assesses offshore wind competitiveness in Brazil using the investment decision model (IDM), which minimizes expansion and operational costs through 2031. Capacity factors (CF) from ERA5 data support monthly energy production estimates across load levels. Three scenarios were analyzed: (i) a reference case based on Brazil’s 10-Year Energy Plan (PDE 2031); (ii) mandatory addition of 500 MW/year of offshore wind to assess cost impact; and (iii) a breakeven case with gradual CAPEX and OPEX reductions until offshore wind became cost-competitive. The results indicate that offshore wind energy can become economically viable with a CAPEX range of approximately USD 1500–1550/kW and an OPEX of USD 50–55/kW·year in locations with a CF above 60%. These cost levels have already been observed in global markets and may be achievable in Brazil. However, challenges, such as the lack of a domestic supply chain and volatility in the exchange rate, remain significant barriers.

Suggested Citation

  • Rodrigo Vellardo Guimarães & Milad Shadman & Saulo Ribeiro Silva & Segen F. Estefen & Maurício Tiomno Tolmasquim & Amaro Olimpio Pereira, 2025. "Cost Breakeven Point of Offshore Wind Energy in Brazil," Energies, MDPI, vol. 18(9), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2198-:d:1642653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jansen, Malte & Beiter, Philipp & Riepin, Iegor & Müsgens, Felix & Guajardo-Fajardo, Victor Juarez & Staffell, Iain & Bulder, Bernard & Kitzing, Lena, 2022. "Policy choices and outcomes for offshore wind auctions globally," Energy Policy, Elsevier, vol. 167(C).
    2. Ghorbani Pashakolaie, Vahid & Cotton, Matthew & Jansen, Malte, 2024. "The co-benefits of offshore wind under the UK Renewable Obligation scheme: Integrating sustainability in energy policy evaluation," Energy Policy, Elsevier, vol. 192(C).
    3. C, O. Mauricio Hernandez & Shadman, Milad & Amiri, Mojtaba Maali & Silva, Corbiniano & Estefen, Segen F. & La Rovere, Emilio, 2021. "Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: A case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2023. "Assessing the national synergy potential of onshore and offshore renewable energy from the perspective of resources dynamic and complementarity," Energy, Elsevier, vol. 279(C).
    5. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    6. Kell, Nicholas P. & van der Weijde, Adriaan Hendrik & Li, Liang & Santibanez-Borda, Ernesto & Pillai, Ajit C., 2023. "Simulating offshore wind contract for difference auctions to prepare bid strategies," Applied Energy, Elsevier, vol. 334(C).
    7. Nunes, Anna Manuella Melo & Santos Júnior, Edvaldo Pereira & Araújo, Jevuks Matheus de & Melo, Ana Karolina Acris & Rolim, Maria João Carreiro Pereira & Simioni, Flávio José & Carvalho, Monica & Coelh, 2024. "Impact assessment of public policies in the municipalities covered by the Brazilian Incentive program for alternative electricity sources (PROINFA)," Renewable Energy, Elsevier, vol. 235(C).
    8. Huang, Kangdi & Luo, Peng & Liu, Pan & KIM, Jong Suk & Wang, Yintang & Xu, Weifeng & Li, He & Gong, Yu, 2022. "Improving complementarity of a hybrid renewable energy system to meet load demand by using hydropower regulation ability," Energy, Elsevier, vol. 248(C).
    9. Tuchtenhagen, Patrícia & Carvalho, Gilvani Gomes de & Martins, Guilherme & Silva, Pollyanne Evangelista da & Oliveira, Cristiano Prestrelo de & de Melo Barbosa Andrade, Lara & Araújo, João Medeiros de, 2020. "WRF model assessment for wind intensity and power density simulation in the southern coast of Brazil," Energy, Elsevier, vol. 190(C).
    10. de Assis Tavares, Luiz Filipe & Shadman, Milad & Assad, Luiz Paulo de Freitas & Estefen, Segen F., 2022. "Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State," Energy, Elsevier, vol. 240(C).
    11. de Assis Tavares, Luiz Filipe & Shadman, Milad & de Freitas Assad, Luiz Paulo & Silva, Corbiniano & Landau, Luiz & Estefen, Segen F., 2020. "Assessment of the offshore wind technical potential for the Brazilian Southeast and South regions," Energy, Elsevier, vol. 196(C).
    12. Nolan, Tahlia, 2024. "Is pivoting offshore the right policy for achieving decarbonisation in the state of Victoria, Australia's electricity sector?," Energy Policy, Elsevier, vol. 190(C).
    13. Pereira, Amaro Olimpio & Cunha da Costa, Ricardo & Costa, Cláudia do Vale & Marreco, Juliana de Moraes & La Rovere, Emílio Lèbre, 2013. "Perspectives for the expansion of new renewable energy sources in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 49-59.
    14. González, Mario Orestes Aguirre & Santiso, Andressa Medeiros & Melo, David Cassimiro de & Vasconcelos, Rafael Monteiro de, 2020. "Regulation for offshore wind power development in Brazil," Energy Policy, Elsevier, vol. 145(C).
    15. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    16. Erika Carvalho Nogueira & Rafael Cancella Morais & Amaro Olimpio Pereira, 2023. "Offshore Wind Power Potential in Brazil: Complementarity and Synergies," Energies, MDPI, vol. 16(16), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    2. Italo Fernandes & Felipe M. Pimenta & Osvaldo R. Saavedra & Arcilan T. Assireu, 2022. "Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation," Energies, MDPI, vol. 15(19), pages 1-24, September.
    3. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. de Assis Tavares, Luiz Filipe & Shadman, Milad & Assad, Luiz Paulo de Freitas & Estefen, Segen F., 2022. "Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State," Energy, Elsevier, vol. 240(C).
    5. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    6. Antonio C. C. Perrelli & Eduardo A. Sodré & André V. R. N. Silva & Caarem D. S. Studzinski & Vinícius F. Silva & Dalton F. G. Filho & Armando T. Neto & Alex A. B. Santos, 2024. "Optimizing Price Markup: The Impact of Power Purchase Agreements and Energy Production Uncertainty on the Economic Performance of Onshore and Offshore Wind Farms," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 211-219, September.
    7. Carreno-Madinabeitia, Sheila & Ibarra-Berastegi, Gabriel & Sáenz, Jon & Ulazia, Alain, 2021. "Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010)," Energy, Elsevier, vol. 226(C).
    8. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    9. Giovanni Gualtieri, 2021. "Reliability of ERA5 Reanalysis Data for Wind Resource Assessment: A Comparison against Tall Towers," Energies, MDPI, vol. 14(14), pages 1-21, July.
    10. Yang, Jaemo & Sengupta, Manajit & Xie, Yu & Shin, Hyeyum Hailey, 2023. "Developing a 20-year high-resolution wind data set for Puerto Rico," Energy, Elsevier, vol. 285(C).
    11. Nezhad, M. Majidi & Neshat, M. & Groppi, D. & Marzialetti, P. & Heydari, A. & Sylaios, G. & Garcia, D. Astiaso, 2021. "A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island," Renewable Energy, Elsevier, vol. 172(C), pages 667-679.
    12. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    13. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    14. Md Altab Hossin & Shuwen Xiong & David Alemzero & Hermas Abudu, 2023. "Analyzing the Progress of China and the World in Achieving Sustainable Development Goals 7 and 13," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    15. Srihari Sundar & Michael T. Craig & Ashley E. Payne & David J. Brayshaw & Flavio Lehner, 2023. "Meteorological drivers of resource adequacy failures in current and high renewable Western U.S. power systems," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    17. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    18. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    19. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    20. Eva Lucas Segarra & Germán Ramos Ruiz & Vicente Gutiérrez González & Antonis Peppas & Carlos Fernández Bandera, 2020. "Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets," Sustainability, MDPI, vol. 12(17), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2198-:d:1642653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.