IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p1992-d1633592.html
   My bibliography  Save this article

Moving Towards Electrified Waste Management Fleet: State of the Art and Future Trends

Author

Listed:
  • Tommaso Bragatto

    (Department of Astronautics, Electric and Energy Engineering, “Sapienza” University of Rome, 00184 Rome, Italy)

  • Mohammad Ghoreishi

    (Department of Astronautics, Electric and Energy Engineering, “Sapienza” University of Rome, 00184 Rome, Italy
    ASM Terni S.p.A., Via Bruno Capponi 100, 05100 Terni, Italy)

  • Francesca Santori

    (ASM Terni S.p.A., Via Bruno Capponi 100, 05100 Terni, Italy)

  • Alberto Geri

    (Department of Astronautics, Electric and Energy Engineering, “Sapienza” University of Rome, 00184 Rome, Italy)

  • Marco Maccioni

    (Department of Astronautics, Electric and Energy Engineering, “Sapienza” University of Rome, 00184 Rome, Italy)

  • Mostafa Jabari

    (Department of Astronautics, Electric and Energy Engineering, “Sapienza” University of Rome, 00184 Rome, Italy
    ASM Terni S.p.A., Via Bruno Capponi 100, 05100 Terni, Italy)

  • Huda M. Almughary

    (Department of Astronautics, Electric and Energy Engineering, “Sapienza” University of Rome, 00184 Rome, Italy
    ASM Terni S.p.A., Via Bruno Capponi 100, 05100 Terni, Italy)

Abstract

Efficient waste management remains critical to achieving sustainable urban development, addressing challenges related to resource conservation, environmental preservation, and carbon emissions reduction. This review synthesizes advancements in waste management technologies, focusing on three transformative areas: optimization techniques, the integration of electric vehicles (EVs), and the adoption of smart technologies. Optimization methodologies, such as vehicle routing problems (VRPs) and dynamic scheduling, have demonstrated significant improvements in operational efficiency and emissions reduction. The integration of EVs has emerged as a sustainable alternative to traditional diesel fleets, reducing greenhouse gas emissions while addressing infrastructure and economic challenges. Additionally, the application of smart technologies, including Internet of Things (IoT), artificial intelligence (AI), and the Geographic Information System (GIS), has revolutionized waste monitoring and decision-making, enhancing the alignment of waste systems with circular economy principles. Despite these advancements, barriers such as high costs, technological complexities, and geographic disparities persist, necessitating scalable, inclusive solutions. This review highlights the need for interdisciplinary research, policy standardization, and global collaboration to overcome these challenges. The findings provide actionable insights for policymakers, municipalities, and businesses, enabling data-driven decision-making, optimized waste collection, and enhanced sustainability strategies in modern waste management systems.

Suggested Citation

  • Tommaso Bragatto & Mohammad Ghoreishi & Francesca Santori & Alberto Geri & Marco Maccioni & Mostafa Jabari & Huda M. Almughary, 2025. "Moving Towards Electrified Waste Management Fleet: State of the Art and Future Trends," Energies, MDPI, vol. 18(8), pages 1-36, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1992-:d:1633592
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/1992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/1992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hailin Wu & Fengming Tao & Bo Yang, 2020. "Optimization of Vehicle Routing for Waste Collection and Transportation," IJERPH, MDPI, vol. 17(14), pages 1-26, July.
    2. Amine Masmoudi, M. & Coelho, Leandro C. & Demir, Emrah, 2022. "Plug-in hybrid electric refuse vehicle routing problem for waste collection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    3. Yong Wang & Jingxin Zhou & Yaoyao Sun & Xiuwen Wang & Jiayi Zhe & Haizhong Wang, 2022. "Electric Vehicle Charging Station Location-Routing Problem with Time Windows and Resource Sharing," Sustainability, MDPI, vol. 14(18), pages 1-31, September.
    4. Huang, Shan-Huen & Lin, Pei-Chun, 2015. "Vehicle routing–scheduling for municipal waste collection system under the “Keep Trash off the Ground” policy," Omega, Elsevier, vol. 55(C), pages 24-37.
    5. Tingting Li & Shejun Deng & Caoye Lu & Yong Wang & Huajun Liao, 2023. "Optimization of Green Vehicle Paths Considering the Impact of Carbon Emissions: A Case Study of Municipal Solid Waste Collection and Transportation," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    6. Ismaila Rimi Abubakar & Khandoker M. Maniruzzaman & Umar Lawal Dano & Faez S. AlShihri & Maher S. AlShammari & Sayed Mohammed S. Ahmed & Wadee Ahmed Ghanem Al-Gehlani & Tareq I. Alrawaf, 2022. "Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South," IJERPH, MDPI, vol. 19(19), pages 1-26, October.
    7. Cristian Cataldo-Díaz & Rodrigo Linfati & John Willmer Escobar, 2022. "Mathematical Model for the Electric Vehicle Routing Problem Considering the State of Charge of the Batteries," Sustainability, MDPI, vol. 14(3), pages 1-26, January.
    8. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    9. Qingqing Qiao & Fengming Tao & Hailin Wu & Xuewei Yu & Mengjun Zhang, 2020. "Optimization of a Capacitated Vehicle Routing Problem for Sustainable Municipal Solid Waste Collection Management Using the PSO-TS Algorithm," IJERPH, MDPI, vol. 17(6), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garside, Annisa Kesy & Ahmad, Robiah & Muhtazaruddin, Mohd Nabil Bin, 2024. "A recent review of solution approaches for green vehicle routing problem and its variants," Operations Research Perspectives, Elsevier, vol. 12(C).
    2. Beatriz Aibar-Guzmán & Sónia Monteiro & Fátima David & Francisco M. Somohano-Rodríguez, 2023. "The Waste Hierarchy at the Business Level: An International Outlook," Mathematics, MDPI, vol. 11(22), pages 1-22, November.
    3. Baihui Jin & Wei Li, 2025. "Spatial Effects and Driving Factors of Consumption Upgrades on Municipal Solid Waste Eco-Efficiency, Considering Emission Outputs," Sustainability, MDPI, vol. 17(6), pages 1-30, March.
    4. Tingxin Wen & Haoting Meng, 2025. "Time-Dependent Multi-Center Semi-Open Heterogeneous Fleet Path Optimization and Charging Strategy," Mathematics, MDPI, vol. 13(7), pages 1-27, March.
    5. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    6. Han, Jialin & Zhang, Jiaxiang & Guo, Haoyue & Zhang, Ning, 2024. "Optimizing location-routing and demand allocation in the household waste collection system using a branch-and-price algorithm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 958-975.
    7. Ana Bricia Galindo-Muro & Riccardo Cespi & Stephany Isabel Vallarta-Serrano, 2023. "Applications of Electric Vehicles in Instant Deliveries," Energies, MDPI, vol. 16(4), pages 1-18, February.
    8. Zhongwei Zhang & Lihui Wu & Zhaoyun Wu & Wenqiang Zhang & Shun Jia & Tao Peng, 2022. "Energy-Saving Oriented Manufacturing Workshop Facility Layout: A Solution Approach Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    9. Ren, Shuyun & Luo, Fengji & Lin, Lei & Hsu, Shu-Chien & LI, Xuran Ivan, 2019. "A novel dynamic pricing scheme for a large-scale electric vehicle sharing network considering vehicle relocation and vehicle-grid-integration," International Journal of Production Economics, Elsevier, vol. 218(C), pages 339-351.
    10. Vincent F. Yu & Panca Jodiawan & Shih-Wei Lin & Winy Fara Nadira & Anna Maria Sri Asih & Le Nguyen Hoang Vinh, 2024. "Using Simulated Annealing to Solve the Multi-Depot Waste Collection Vehicle Routing Problem with Time Window and Self-Delivery Option," Mathematics, MDPI, vol. 12(3), pages 1-20, February.
    11. Asif Iqbal & Abdullah Yasar & Abdul-Sattar Nizami & Rafia Haider & Faiza Sharif & Imran Ali Sultan & Amtul Bari Tabinda & Aman Anwer Kedwaii & Muhammad Murtaza Chaudhary, 2022. "Municipal Solid Waste Collection and Haulage Modeling Design for Lahore, Pakistan: Transition toward Sustainability and Circular Economy," Sustainability, MDPI, vol. 14(23), pages 1-39, December.
    12. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
    13. Saira Latif & Torbjörn Lindbäck & Magnus Karlberg & Johanna Wallsten, 2022. "Bale Collection Path Planning Using an Autonomous Vehicle with Neighborhood Collection Capabilities," Agriculture, MDPI, vol. 12(12), pages 1-20, November.
    14. Reem F. Alruwaili & Nourah Alsadaan & Abeer Nuwayfi Alruwaili & Afrah Ghazi Alrumayh, 2023. "Unveiling the Symbiosis of Environmental Sustainability and Infection Control in Health Care Settings: A Systematic Review," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    15. Yu, Yang & Wu, Yuting & Wang, Junwei, 2019. "Bi-objective green ride-sharing problem: Model and exact method," International Journal of Production Economics, Elsevier, vol. 208(C), pages 472-482.
    16. Yong Wang & Jingxin Zhou & Yaoyao Sun & Xiuwen Wang & Jiayi Zhe & Haizhong Wang, 2022. "Electric Vehicle Charging Station Location-Routing Problem with Time Windows and Resource Sharing," Sustainability, MDPI, vol. 14(18), pages 1-31, September.
    17. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    18. Wanting Zhang & Ming Zeng & Peng Guo & Kun Wen, 2022. "Variable Neighborhood Search for Multi-Cycle Medical Waste Recycling Vehicle Routing Problem with Time Windows," IJERPH, MDPI, vol. 19(19), pages 1-25, October.
    19. Anupong Muttaraid & Sirintornthep Towprayoon & Chart Chiemchaisri & Thapat Silalertruksa & Komsilp Wangyao, 2024. "Enhanced Landfill Mining in Thailand: Policy Implications from Qualitative Case Study Analysis," Sustainability, MDPI, vol. 16(24), pages 1-16, December.
    20. Betty Carlini & Javier Velázquez & Derya Gülçin & Cristina Lucini & Víctor Rincón, 2025. "Evaluation of Sustainable Development Objectives in the Production of Protected Geographical Indication Legumes," Land, MDPI, vol. 14(3), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1992-:d:1633592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.