IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i6p2356-d1607747.html
   My bibliography  Save this article

Spatial Effects and Driving Factors of Consumption Upgrades on Municipal Solid Waste Eco-Efficiency, Considering Emission Outputs

Author

Listed:
  • Baihui Jin

    (School of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China
    These authors contributed equally to this work.)

  • Wei Li

    (School of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China
    These authors contributed equally to this work.)

Abstract

To achieve the goal of building zero-waste cities, managing greenhouse gas (GHG) emissions generated from municipal solid waste (MSW) treatment is a critical step toward carbon neutrality. Waste produced by consumption activities constitutes an essential component of MSW management. Using the Super Slacks-Based Measure Data Envelopment Analysis (SSBM-DEA) model and the Spatial Durbin Model (SDM), this study investigates the spatial impacts of consumption upgrading (CU) on municipal waste management across 30 provinces in China, with a particular focus on GHGs as undesirable outputs. In this study, we construct a framework from the dimensions of consumption level, consumption structure, and green consumption. Additionally, other socioeconomic factors influencing waste management are explored. The results indicate a convergence trend in the uneven distribution of consumption upgrading, with the gaps between regions gradually narrowing. Consumption upgrading significantly enhances the eco-efficiency of local waste management and exhibits notable spatial spillover effects, positively influencing the eco-efficiency of neighboring regions. Furthermore, the promotion effect of consumption upgrading on the central and western regions, compared with the eastern region, is more pronounced. This indicates that the technological catch-up resulting from consumption upgrading, supported by policies, can further enhance the eco-efficiency of MSW. This study also provides insights for other regions transitioning from scale expansion to high-quality development in waste management.

Suggested Citation

  • Baihui Jin & Wei Li, 2025. "Spatial Effects and Driving Factors of Consumption Upgrades on Municipal Solid Waste Eco-Efficiency, Considering Emission Outputs," Sustainability, MDPI, vol. 17(6), pages 1-31, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2356-:d:1607747
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/6/2356/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/6/2356/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tone, Kaoru & Chang, Tsung-Sheng & Wu, Chen-Hui, 2020. "Handling negative data in slacks-based measure data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 926-935.
    2. Jin, Baihui & Li, Wei & Li, Guoming & Wang, Qi, 2024. "Does upgrading household consumption affect the eco-efficiency of China's solid waste management as measured by emissions?," Utilities Policy, Elsevier, vol. 89(C).
    3. Kagawa, Shigemi & Nakamura, Shinichiro & Inamura, Hajime & Yamada, Masato, 2007. "Measuring spatial repercussion effects of regional waste management," Resources, Conservation & Recycling, Elsevier, vol. 51(1), pages 141-174.
    4. Jun-liang Du & Yong Liu & Wei-xue Diao, 2019. "Assessing Regional Differences in Green Innovation Efficiency of Industrial Enterprises in China," IJERPH, MDPI, vol. 16(6), pages 1-23, March.
    5. Tingting Li & Shejun Deng & Caoye Lu & Yong Wang & Huajun Liao, 2023. "Optimization of Green Vehicle Paths Considering the Impact of Carbon Emissions: A Case Study of Municipal Solid Waste Collection and Transportation," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    6. Mei Shang & Xinxin Shen & Daoyan Guo, 2024. "Analysis of Green Transformation and Driving Factors of Household Consumption Patterns in China from the Perspective of Carbon Emissions," Sustainability, MDPI, vol. 16(2), pages 1-34, January.
    7. Chen, Chung-Chiang, 2010. "A performance evaluation of MSW management practice in Taiwan," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1353-1361.
    8. lo Storto, Corrado, 2024. "Measuring the eco-efficiency of municipal solid waste service: A fuzzy DEA model for handling missing data," Utilities Policy, Elsevier, vol. 86(C).
    9. Irina-Elena Petrescu & Mariarosaria Lombardi & Georgiana-Raluca Lădaru & Răzvan Aurelian Munteanu & Mihai Istudor & Georgiana Adriana Tărășilă, 2022. "Influence of the Total Consumption of Households on Municipal Waste Quantity in Romania," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    10. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    11. Puertas, Rosa & Guaita-Martinez, José M. & Carracedo, Patricia & Ribeiro-Soriano, Domingo, 2022. "Analysis of European environmental policies: Improving decision making through eco-efficiency," Technology in Society, Elsevier, vol. 70(C).
    12. Zhang, Jin & Shi, Dan & Ma, Lianrui & Wu, Yuan & Liu, Shoulin & Li, Jinkai, 2024. "The role of household energy consumption behavior in environmental policy outcomes —the case of driving restriction policy in zhengzhou," Energy Policy, Elsevier, vol. 188(C).
    13. Ying Zhang & Qianxiao Zhang, 2023. "Income Disparity, Consumption Patterns, and Trends of International Consumption Center City Construction, Based on a Test of China’s Consumer Market," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    14. Xiaowei Xing & Azhong Ye, 2022. "Consumption Upgrading and Industrial Structural Change: A General Equilibrium Analysis and Empirical Test with Low-Carbon Green Transition Constraints," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    15. Xiaobing Le & Xinxin Shao & Kuo Gao, 2023. "The Relationship between Urbanization and Consumption Upgrading of Rural Residents under the Sustainable Development: An Empirical Study Based on Mediation Effect and Threshold Effect," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Baihui & Li, Wei & Li, Guoming & Wang, Qi, 2024. "Does upgrading household consumption affect the eco-efficiency of China's solid waste management as measured by emissions?," Utilities Policy, Elsevier, vol. 89(C).
    2. Dongjing Chen & Xiaotong Guo, 2023. "Impact of the Digital Economy and Financial Development on Residents’ Consumption Upgrading: Evidence from Mainland China," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    3. Fan Wang & Lili Feng & Jin Li & Lin Wang, 2020. "Environmental Regulation, Tenure Length of Officials, and Green Innovation of Enterprises," IJERPH, MDPI, vol. 17(7), pages 1-16, March.
    4. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    5. Mengchao Yao & Jinjun Duan & Qingsong Wang, 2022. "Spatial and Temporal Evolution Analysis of Industrial Green Technology Innovation Efficiency in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(11), pages 1-20, May.
    6. Liwen Sun & Ying Han, 2022. "Spatial Correlation Network Structure and Influencing Factors of Two-Stage Green Innovation Efficiency: Evidence from China," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    7. Lee, Hsuan-Shih, 2022. "Integrating SBM model and Super-SBM model: a one-model approach," Omega, Elsevier, vol. 113(C).
    8. Tone, Kaoru & Toloo, Mehdi & Izadikhah, Mohammad, 2020. "A modified slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 287(2), pages 560-571.
    9. Mehdi Soltanifar & Hamid Sharafi, 2022. "A modified DEA cross efficiency method with negative data and its application in supplier selection," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 265-296, January.
    10. Lee, Hsuan-Shih, 2021. "Slacks-based measures of efficiency and super-efficiency in presence of nonpositive data," Omega, Elsevier, vol. 103(C).
    11. Xu, Ru-Yu & Wang, Ke-Liang & Miao, Zhuang, 2024. "The impact of digital technology innovation on green total-factor energy efficiency in China: Does economic development matter?," Energy Policy, Elsevier, vol. 194(C).
    12. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    13. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    14. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    15. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Meng Guo & Shukai Cai, 2022. "Impact of Green Innovation Efficiency on Carbon Peak: Carbon Neutralization under Environmental Governance Constraints," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    17. Ke Liu & Yurong Qiao & Qian Zhou, 2021. "Analysis of China’s Industrial Green Development Efficiency and Driving Factors: Research Based on MGWR," IJERPH, MDPI, vol. 18(8), pages 1-22, April.
    18. Xiao Zhang & Di Wang, 2023. "Beyond the Ecological Boundary: A Quasi-Natural Experiment on the Impact of National Marine Parks on Eco-Efficiency in Coastal Cities," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    19. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    20. Yakun Wang & Jingli Jiang & Dongqing Wang & Xinshang You, 2022. "Can Mechanization Promote Green Agricultural Production? An Empirical Analysis of Maize Production in China," Sustainability, MDPI, vol. 15(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2356-:d:1607747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.