IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1780-d1626524.html
   My bibliography  Save this article

Multi-Timescale Nested Hydropower Station Optimization Scheduling Based on the Migrating Particle Whale Optimization Algorithm

Author

Listed:
  • Mi Zhang

    (Hubei Key Laboratory of Digital Valley Science and Technology, School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Guosheng Zhou

    (Hubei Energy Group Loushui Hydropower Co., Ltd., Enshi 445800, China)

  • Bei Liu

    (Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, China)

  • Dajun Huang

    (Hubei Energy Group Loushui Hydropower Co., Ltd., Enshi 445800, China)

  • Hao Yu

    (Hubei Energy Group Loushui Hydropower Co., Ltd., Enshi 445800, China)

  • Li Mo

    (Hubei Key Laboratory of Digital Valley Science and Technology, School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Exploring efficient and stable solution methods for hydropower generation optimization models is crucial for enhancing reservoir power generation efficiency and achieving the sustainable use of water resources. However, existing studies predominantly focus on single-timescale scheduling models, failing to fully exploit multi-timescale runoff information. Additionally, commonly used solution algorithms often face challenges such as premature convergence, susceptibility to local optima, and dimensionality issues. To address these limitations, this paper proposes the Migrating Particle Whale Optimization Algorithm (MPWOA), which initializes the population using chaotic mapping, incorporates a particle swarm mechanism to enhance exploitation during the spiral predation phase, and integrates the black-winged kite migration mechanism to improve stochastic search performance. Validation on classical test functions and the Jiangpinghe River of the multi-timescale nested optimal scheduling model demonstrates that MPWOA exhibits faster convergence and stronger optimization capabilities and significantly improves power generation. The multi-timescale nested scheduling scheme derived from this algorithm effectively utilizes runoff information, offering a practical and highly efficient solution for hydropower scheduling.

Suggested Citation

  • Mi Zhang & Guosheng Zhou & Bei Liu & Dajun Huang & Hao Yu & Li Mo, 2025. "Multi-Timescale Nested Hydropower Station Optimization Scheduling Based on the Migrating Particle Whale Optimization Algorithm," Energies, MDPI, vol. 18(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1780-:d:1626524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kun Yang & Kan Yang, 2021. "Short-Term Hydro Generation Scheduling of the Three Gorges Hydropower Station Using Improver Binary-coded Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3771-3790, September.
    2. Tatiana Myateg & Sergey Mitrofanov & Chen Xi & Yuri Sekretarev & Murodbek Safaraliev & Roman Volosatov & Anna Arestova & Aminjon Gulakhmadov, 2024. "Long-Term Hydropower Plant Scheduling Considering Environmental and Economic Criteria," Sustainability, MDPI, vol. 16(22), pages 1-18, November.
    3. Niu, Wen-jing & Luo, Tao & Yao, Xin-ru & Gong, Jin-tai & Huang, Qing-qing & Gao, Hao-yu & Feng, Zhong-kai, 2024. "Artificial intelligence-based response surface progressive optimality algorithm for operation optimization of multiple hydropower reservoirs," Energy, Elsevier, vol. 291(C).
    4. Wang, Zhenni & Tan, Qiaofeng & Wen, Xin & Su, Huaying & Fang, Guohua & Wang, Hao, 2025. "Capacity optimization of retrofitting cascade hydropower plants with pumping stations for renewable energy integration: A case study," Applied Energy, Elsevier, vol. 377(PC).
    5. Abdallah Ben Alaya & Abderrazek Souissi & Jamila Tarhouni & Kamel Ncib, 2003. "Optimization of Nebhana Reservoir Water Allocation by Stochastic Dynamic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(4), pages 259-272, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mi Zhang & Zixuan Liu & Rungang Bao & Shuli Zhu & Li Mo & Yuqi Yang, 2025. "Application of Black-Winged Differential-Variant Whale Optimization Algorithm in the Optimization Scheduling of Cascade Hydropower Stations," Sustainability, MDPI, vol. 17(3), pages 1-27, January.
    2. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    3. Wu, Yuqiang & Liao, Shengli & Liu, Benxi & Cheng, Chuntian & Zhao, Hongye & Fang, Zhou & Lu, Jia, 2024. "Short-term load distribution model for cascade giant hydropower stations with complex hydraulic and electrical connections," Renewable Energy, Elsevier, vol. 232(C).
    4. Juárez-Torres, Miriam & Sánchez-Aragón, Leonardo & Vedenov, Dmitry, 2017. "Weather Derivatives and Water Management in Developing Countries: An Application for an Irrigation District in Central Mexico," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(2), May.
    5. Maryam Ghashghaie & Safar Marofi & Hossein Marofi, 2014. "Using System Dynamics Method to Determine the Effect of Water Demand Priorities on Downstream Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5055-5072, November.
    6. Tran, Lap Doc & Schilizzi, Steven & Chalak, Morteza & Kingwell, Ross, 2011. "Optimizing competitive uses of water for irrigation and fisheries," Agricultural Water Management, Elsevier, vol. 101(1), pages 42-51.
    7. Fred A. Johnson & Mitchell J. Eaton & James H. Williams & Gitte H. Jensen & Jesper Madsen, 2015. "Training Conservation Practitioners to be Better Decision Makers," Sustainability, MDPI, vol. 7(7), pages 1-20, June.
    8. Seyed-Mohammad Hosseini-Moghari & Reza Morovati & Mohammad Moghadas & Shahab Araghinejad, 2015. "Optimum Operation of Reservoir Using Two Evolutionary Algorithms: Imperialist Competitive Algorithm (ICA) and Cuckoo Optimization Algorithm (COA)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3749-3769, August.
    9. Kun Yang & Kan Yang, 2022. "Improved Whale Algorithm for Economic Load Dispatch Problem in Hydropower Plants and Comprehensive Performance Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5823-5838, December.
    10. Jin Wang & Guo Cheng & Yi Gao & Ai Long & Zhong Xu & Xin Li & Hongyan Chen & Tom Barker, 2008. "Optimal Water Resource Allocation in Arid and Semi-Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(2), pages 239-258, February.
    11. Mu, Yunfei & Jiang, Xinyang & Ma, Xiaoyan & Zhang, Jiarui & Jia, Hongjie & Jin, Xiaolong & Yao, Boren, 2025. "Hierarchical regulation strategy based on dynamic clustering for economic optimization of large-scale 5G base stations," Applied Energy, Elsevier, vol. 377(PD).
    12. GuoLiang Wei & ZhiFeng Yang & BaoShan Cui & Bing Li & He Chen & JunHong Bai & ShiKui Dong, 2009. "Impact of Dam Construction on Water Quality and Water Self-Purification Capacity of the Lancang River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(9), pages 1763-1780, July.
    13. Seppelt, Ralf & Müller, Felix & Schröder, Boris & Volk, Martin, 2009. "Challenges of simulating complex environmental systems at the landscape scale: A controversial dialogue between two cups of espresso," Ecological Modelling, Elsevier, vol. 220(24), pages 3481-3489.
    14. Maritza Arganis-Juárez & Rosalva Mendoza-Ramírez & Ramón Domínguez-Mora & Alma Hernández-Ruiz & Moisés Berezowsky-Verduzco, 2013. "Influence of Guiding Curves in the Optimal Management of a Hydropower System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 4989-5001, December.
    15. Gallagher, Nicholas James, 2024. "Dynamic Programming Methods for Characterizing In-Season Farm Management Decisions," Dissertations and Theses 344827, Ekiti State University, Ado-Ekiti, Department of Agricultural Economics and Extension Services.
    16. Chen, Shu & Shao, Dongguo & Gu, Wenquan & Xu, Baoli & Li, Haoxin & Fang, Longzhang, 2017. "An interval multistage water allocation model for crop different growth stages under inputs uncertainty," Agricultural Water Management, Elsevier, vol. 186(C), pages 86-97.
    17. Chen, Shu & Xu, Jijun & Li, Qingqing & Tan, Xuezhi & Nong, Xizhi, 2019. "A copula-based interval-bistochastic programming method for regional water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 217(C), pages 154-164.
    18. Ajay Singh, 2014. "Irrigation Planning and Management Through Optimization Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 1-14, January.
    19. Asmadi Ahmad & Ahmed El-Shafie & Siti Razali & Zawawi Mohamad, 2014. "Reservoir Optimization in Water Resources: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3391-3405, September.
    20. Li, Jiang & Shang, Songhao & Jiang, Hongzhe & Song, Jian & Rahman, Khalil Ur & Adeloye, Adebayo J., 2021. "Simulation-based optimization for spatiotemporal allocation of irrigation water in arid region," Agricultural Water Management, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1780-:d:1626524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.