IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008667.html
   My bibliography  Save this article

Capacity planning for large-scale wind-photovoltaic-pumped hydro storage energy bases based on ultra-high voltage direct current power transmission

Author

Listed:
  • Sun, Jianyang
  • Su, Chengguo
  • Song, Jingchao
  • Yao, Chenchen
  • Ren, Zaimin
  • Sui, Quan

Abstract

To address the mismatch between renewable energy resources and load centers in China, this study proposes a two-layer capacity planning model for large-scale wind-photovoltaic-pumped hydro storage energy bases integrated with ultra-high-voltage direct current transmission lines. The model introduces a multi-mode operational framework, enhancing its adaptability to diverse regional conditions and operational scenarios. Additionally, it explicitly incorporates ultra-high-voltage direct current operational constraints, ensuring realistic and robust transmission planning. The outer-layer focuses on capacity optimization, while the inner-layer employs an 8760-h time-series simulation to comprehensively evaluate operational performance under varying conditions, offering a practical and generalizable solution for renewable energy base planning. The case study shows that: (1) Integrated operation of wind and photovoltaic power with pumped hydro storage enhances transmission stability and efficiency, achieving a power supply guarantee rate over 90 % and curtailment rate below 15 %. (2) Under free transmission mode, the transmission curve is smooth and stable, with power supply guarantee rate surpassing 99 % and curtailment rate under 4 %. (3) Due to temporal mismatches between renewable generation and load demand in Northwest China, the agreed transmission curve mode reveals that pumped hydro storage alone is insufficient to meet external transmission needs, requiring gas turbine units for collaborative regulation.

Suggested Citation

  • Sun, Jianyang & Su, Chengguo & Song, Jingchao & Yao, Chenchen & Ren, Zaimin & Sui, Quan, 2025. "Capacity planning for large-scale wind-photovoltaic-pumped hydro storage energy bases based on ultra-high voltage direct current power transmission," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008667
    DOI: 10.1016/j.energy.2025.135224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hongxuan & Lu, Zongxiang & Hu, Wei & Wang, Yiting & Dong, Ling & Zhang, Jietan, 2019. "Coordinated optimal operation of hydro–wind–solar integrated systems," Applied Energy, Elsevier, vol. 242(C), pages 883-896.
    2. Wen, Xin & Sun, Yuanliang & Tan, Qiaofeng & Tang, Zhengyang & Wang, Zhenni & Liu, Zhehua & Ding, Ziyu, 2022. "Optimizing the sizes of wind and photovoltaic plants complementarily operating with cascade hydropower stations: Balancing risk and benefit," Applied Energy, Elsevier, vol. 306(PA).
    3. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    4. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    5. Zhao, Mingzhe & Wang, Yimin & Wang, Xuebin & Chang, Jianxia & Chen, Yunhua & Zhou, Yong & Guo, Aijun, 2022. "Flexibility evaluation of wind-PV-hydro multi-energy complementary base considering the compensation ability of cascade hydropower stations," Applied Energy, Elsevier, vol. 315(C).
    6. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    7. Lv, Mingyang & Gou, Kaijie & Chen, Heng & Lei, Jing & Zhang, Guoqiang & Liu, Tao, 2024. "Optimal Design of Wind-Solar complementary power generation systems considering the maximum capacity of renewable energy," Energy, Elsevier, vol. 312(C).
    8. Shen, Jianjian & Cheng, Chuntian & Cheng, Xiong & Lund, Jay R., 2016. "Coordinated operations of large-scale UHVDC hydropower and conventional hydro energies about regional power grid," Energy, Elsevier, vol. 95(C), pages 433-446.
    9. Wang, Zhenni & Tan, Qiaofeng & Wen, Xin & Su, Huaying & Fang, Guohua & Wang, Hao, 2025. "Capacity optimization of retrofitting cascade hydropower plants with pumping stations for renewable energy integration: A case study," Applied Energy, Elsevier, vol. 377(PC).
    10. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    11. Lei, Kaixuan & Chang, Jianxia & Wang, Xuebin & Guo, Aijun & Wang, Yimin & Ren, Chengqing, 2023. "Peak shaving and short-term economic operation of hydro-wind-PV hybrid system considering the uncertainty of wind and PV power," Renewable Energy, Elsevier, vol. 215(C).
    12. Zhang, Yusheng & Zhao, Xuehua & Wang, Xin & Li, Aiyun & Wu, Xinhao, 2023. "Multi-objective optimization design of a grid-connected hybrid hydro-photovoltaic system considering power transmission capacity," Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Junhao & Guo, Aijun & Wang, Yimin & Chang, Jianxia & Wang, Xuebin & Wang, Zhen & Tian, Yuyu & Jing, Zhiqiang & Peng, Zhiwen, 2024. "How to achieve optimal photovoltaic plant capacity in hydro-photovoltaic complementary systems: Fully coupling long-term and short-term operational modes of cascade hydropower plants," Energy, Elsevier, vol. 313(C).
    2. Feng, Zhong-kai & Huang, Qing-qing & Niu, Wen-jing & Su, Hua-ying & Li, Shu-shan & Wu, Hui-jun & Wang, Jia-yang, 2024. "Peak operation optimization of cascade hydropower reservoirs and solar power plants considering output forecasting uncertainty," Applied Energy, Elsevier, vol. 358(C).
    3. Tang, Haotian & Li, Rui & Song, Tongqing & Ju, Shenghong, 2025. "Short-term optimal scheduling and comprehensive assessment of hydro-photovoltaic-wind systems augmented with hybrid pumped storage hydropower plants and diversified energy storage configurations," Applied Energy, Elsevier, vol. 389(C).
    4. Hailun Wang & Yang Li & Feng Wu & Shengming He & Renshan Ding, 2024. "Capacity Optimization of Pumped–Hydro–Wind–Photovoltaic Hybrid System Based on Normal Boundary Intersection Method," Sustainability, MDPI, vol. 16(17), pages 1-26, August.
    5. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    6. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    7. Wang, Huan & Liao, Shengli & Cheng, Chuntian & Liu, Benxi & Fang, Zhou & Wu, Huijun, 2025. "Short-term scheduling strategies for hydro-wind-solar-storage considering variable-speed unit of pumped storage," Applied Energy, Elsevier, vol. 377(PA).
    8. Liu, Mao & Kong, Xiangyu & Lian, Jijian & Wang, Jimin & Yang, Bohan, 2025. "Distributionally robust coordinated day-ahead scheduling of Cascade pumped hydro energy storage system and DC transmission," Applied Energy, Elsevier, vol. 384(C).
    9. Huo, Zhishuo & Zhang, Juntao & Cheng, Chuntian & Cao, Hui & Yang, Yuqi, 2025. "A synergistic model framework for identifying variable renewable energy integration capacity and deployment sites for hydro-wind-PV integrated energy bases," Energy, Elsevier, vol. 314(C).
    10. Haodong Huang & Qin Shen & Wan Liu & Ying Peng & Shuli Zhu & Rungang Bao & Li Mo, 2025. "Optimal Scheduling of a Hydropower–Wind–Solar Multi-Objective System Based on an Improved Strength Pareto Algorithm," Sustainability, MDPI, vol. 17(15), pages 1-26, August.
    11. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Lu, Jia & Cheng, Chuntian, 2023. "Short-term coordinated hybrid hydro-wind-solar optimal scheduling model considering multistage section restrictions," Renewable Energy, Elsevier, vol. 217(C).
    12. Wang, Zhenni & Tan, Qiaofeng & Wen, Xin & Su, Huaying & Fang, Guohua & Wang, Hao, 2025. "Capacity optimization of retrofitting cascade hydropower plants with pumping stations for renewable energy integration: A case study," Applied Energy, Elsevier, vol. 377(PC).
    13. Cao, Yupu & Xu, Bo & Zhang, Chi & Li, Fang-Fang & Liu, Zhanwei, 2025. "Strategic site-level planning of VRE integration in hydro-wind-solar systems under uncertainty," Energy, Elsevier, vol. 328(C).
    14. Zhang, Junhao & Wang, Yimin & Wang, Xuebin & Guo, Aijun & Chang, Jianxia & Niu, Chen & Li, Zhehao & Wang, Liyuan & Ren, Chengqing, 2025. "Quantitative analysis and operation strategies for daily-regulation hydropower plants impacted by upstream plant," Energy, Elsevier, vol. 328(C).
    15. Wang, He & Tan, Xiaoqiang & Lu, Xueding & Zhu, Zhiwei & Xu, Rongli & Liu, Xiaobing & Wang, Zhengwei & Li, Chaoshun, 2024. "Quantitative evaluation and optimization of synergistic regulation performance considering wear in short-term response of hybrid pumped storage systems," Renewable Energy, Elsevier, vol. 237(PA).
    16. Zhao, Zhipeng & Yu, Zhihui & Kang, Yongxi & Wang, Jin & Cheng, Chuntian & Su, Huaying, 2025. "Hydro-photovoltaic complementary dispatch based on active regulation of cascade hydropower considering multi-transmission channel constraints," Applied Energy, Elsevier, vol. 377(PC).
    17. Rui Cao & Jianjian Shen & Chuntian Cheng & Jian Wang, 2020. "Optimization Model for the Long-Term Operation of an Interprovincial Hydropower Plant Incorporating Peak Shaving Demands," Energies, MDPI, vol. 13(18), pages 1-21, September.
    18. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    20. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.