IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224039392.html
   My bibliography  Save this article

How to achieve optimal photovoltaic plant capacity in hydro-photovoltaic complementary systems: Fully coupling long-term and short-term operational modes of cascade hydropower plants

Author

Listed:
  • Zhang, Junhao
  • Guo, Aijun
  • Wang, Yimin
  • Chang, Jianxia
  • Wang, Xuebin
  • Wang, Zhen
  • Tian, Yuyu
  • Jing, Zhiqiang
  • Peng, Zhiwen

Abstract

The key to rational planning of renewable energy power plant capacity lies in the accuracy of the calculation model's simulation of the real-world system. Cascade hydropower plants are jointly managed by water and electricity departments, necessitating consideration of both long-term water distribution and short-term peak-shaving demands. However, existing renewable energy power plant capacity planning studies often oversimplify. Therefore, this study introduces a capacity planning framework that integrates both long-term and short-term operational modes for cascade hydropower plants. The Hydro-PV complementary model is established to enable simultaneous calculations for "short-term daily peak and valley complementing " and " long-term energy abundance and depletion mutual". Furthermore, a set of Hydro-Photovoltaic complementary system evaluate indicators are introduced to assess the reasonableness and reliability of PV plant capacity planning. Additionally, deep integration of multiple solving approaches accelerates the model's solution speed. Finally, the framework is applied to the KS River basin. The findings reveal: (1) PV utilization hours decrease with increased PV plant capacity in Hydro-Photovoltaic complementary. (2) Influenced by the basin's comprehensive utilization flow, the recommended PV capacity corresponding to a 5 % curtailment rate is 400 MW. (3) Extremely low or high discharge limit hydropower's peak-shaving, leading to PV curtailment.

Suggested Citation

  • Zhang, Junhao & Guo, Aijun & Wang, Yimin & Chang, Jianxia & Wang, Xuebin & Wang, Zhen & Tian, Yuyu & Jing, Zhiqiang & Peng, Zhiwen, 2024. "How to achieve optimal photovoltaic plant capacity in hydro-photovoltaic complementary systems: Fully coupling long-term and short-term operational modes of cascade hydropower plants," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224039392
    DOI: 10.1016/j.energy.2024.134161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224039392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimization of hydropower reservoirs operation balancing generation benefit and ecological requirement with parallel multi-objective genetic algorithm," Energy, Elsevier, vol. 153(C), pages 706-718.
    2. Wen, Xin & Sun, Yuanliang & Tan, Qiaofeng & Tang, Zhengyang & Wang, Zhenni & Liu, Zhehua & Ding, Ziyu, 2022. "Optimizing the sizes of wind and photovoltaic plants complementarily operating with cascade hydropower stations: Balancing risk and benefit," Applied Energy, Elsevier, vol. 306(PA).
    3. Jing, Zhiqiang & Wang, Yimin & Chang, Jianxia & Wang, Xuebin & Zhou, Yong & Li, Liang & Tian, Yuyu, 2024. "Benefit compensation of hydropower-wind-photovoltaic complementary operation in the large clean energy base," Applied Energy, Elsevier, vol. 354(PA).
    4. Rashid, Muhammad Usman & Abid, Irfan & Latif, Abid, 2022. "Optimization of hydropower and related benefits through Cascade Reservoirs for sustainable economic growth," Renewable Energy, Elsevier, vol. 185(C), pages 241-254.
    5. Zhao, Mingzhe & Wang, Yimin & Wang, Xuebin & Chang, Jianxia & Chen, Yunhua & Zhou, Yong & Guo, Aijun, 2022. "Flexibility evaluation of wind-PV-hydro multi-energy complementary base considering the compensation ability of cascade hydropower stations," Applied Energy, Elsevier, vol. 315(C).
    6. Wang, Peilin & Yuan, Wenlin & Su, Chengguo & Wu, Yang & Lu, Lu & Yan, Denghua & Wu, Zening, 2022. "Short-term optimal scheduling of cascade hydropower plants shaving peak load for multiple power grids," Renewable Energy, Elsevier, vol. 184(C), pages 68-79.
    7. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Lian, Jijian & Wang, Xin, 2022. "Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind," Energy, Elsevier, vol. 259(C).
    8. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Jia, Zebin, 2024. "Assessing hydropower capability for accommodating variable renewable energy considering peak shaving of multiple power grids," Energy, Elsevier, vol. 305(C).
    9. Huang, Mengdi & Chang, Jianxia & Guo, Aijun & Zhao, Mingzhe & Ye, Xiangmin & Lei, Kaixuan & Peng, Zhiwen & Wang, Yimin, 2023. "Cascade hydropower stations optimal dispatch considering flexible margin in renewable energy power system," Energy, Elsevier, vol. 285(C).
    10. Tan, Qiaofeng & Zhang, Ziyi & Wen, Xin & Fang, Guohua & Xu, Shuo & Nie, Zhuang & Wang, Yanling, 2024. "Risk control of hydropower-photovoltaic multi-energy complementary scheduling based on energy storage allocation," Applied Energy, Elsevier, vol. 358(C).
    11. Feng, Zhong-kai & Huang, Qing-qing & Niu, Wen-jing & Su, Hua-ying & Li, Shu-shan & Wu, Hui-jun & Wang, Jia-yang, 2024. "Peak operation optimization of cascade hydropower reservoirs and solar power plants considering output forecasting uncertainty," Applied Energy, Elsevier, vol. 358(C).
    12. Liao, Shengli & Xiong, Jiang & Liu, Benxi & Cheng, Chuntian & Zhou, Binbin & Wu, Yuqiang, 2024. "MILP model for short-term peak shaving of multi-grids using cascade hydropower considering discrete HVDC constraints," Renewable Energy, Elsevier, vol. 235(C).
    13. Wang, Zhenni & Tan, Qiaofeng & Wen, Xin & Su, Huaying & Fang, Guohua & Wang, Hao, 2025. "Capacity optimization of retrofitting cascade hydropower plants with pumping stations for renewable energy integration: A case study," Applied Energy, Elsevier, vol. 377(PC).
    14. Hart, Elaine K. & Jacobson, Mark Z., 2011. "A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables," Renewable Energy, Elsevier, vol. 36(8), pages 2278-2286.
    15. Lei, Kaixuan & Chang, Jianxia & Wang, Xuebin & Guo, Aijun & Wang, Yimin & Ren, Chengqing, 2023. "Peak shaving and short-term economic operation of hydro-wind-PV hybrid system considering the uncertainty of wind and PV power," Renewable Energy, Elsevier, vol. 215(C).
    16. Wang, Sen & Li, Fengting & Zhang, Gaohang & Yin, Chunya, 2023. "Analysis of energy storage demand for peak shaving and frequency regulation of power systems with high penetration of renewable energy," Energy, Elsevier, vol. 267(C).
    17. Zhou, Shuai & Wang, Yimin & Su, Hui & Chang, Jianxia & Huang, Qiang & Li, Ziyan, 2024. "Dynamic quantitative assessment of multiple uncertainty sources in future hydropower generation prediction of cascade reservoirs with hydrological variations," Energy, Elsevier, vol. 299(C).
    18. He, Yaoyao & Hong, Xiaoyu & Wang, Chao & Qin, Hui, 2023. "Optimal capacity configuration of the hydro-wind-photovoltaic complementary system considering cascade reservoir connection," Applied Energy, Elsevier, vol. 352(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chong Wu & Tong Xu & Shenhao Yang & Yong Zheng & Xiaobin Yan & Maoyu Mao & Ziyi Jiang & Qian Li, 2025. "Gas−Hydro Coordinated Peaking Considering Source-Load Uncertainty and Deep Peaking," Energies, MDPI, vol. 18(5), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Zhishuo & Zhang, Juntao & Cheng, Chuntian & Cao, Hui & Yang, Yuqi, 2025. "A synergistic model framework for identifying variable renewable energy integration capacity and deployment sites for hydro-wind-PV integrated energy bases," Energy, Elsevier, vol. 314(C).
    2. Li, Junhui & Yu, Zhenbo & Mu, Gang & Li, Baoju & Zhou, Jiaxu & Yan, Gangui & Zhu, Xingxu & Li, Cuiping, 2024. "An assessment methodology for the flexibility capacity of new power system based on two-stage robust optimization," Applied Energy, Elsevier, vol. 376(PB).
    3. Shi, Yunhong & Wang, Honglei & Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2024. "Stochastic optimization of system configurations and operation of hybrid cascade hydro-wind-photovoltaic with battery for uncertain medium- and long-term load growth," Applied Energy, Elsevier, vol. 364(C).
    4. Zhao, Zhipeng & Yu, Zhihui & Kang, Yongxi & Wang, Jin & Cheng, Chuntian & Su, Huaying, 2025. "Hydro-photovoltaic complementary dispatch based on active regulation of cascade hydropower considering multi-transmission channel constraints," Applied Energy, Elsevier, vol. 377(PC).
    5. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    6. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    7. Zhao, Hongye & Liao, Shengli & Ma, Xiangyu & Fang, Zhou & Cheng, Chuntian & Zhang, Zheng, 2024. "Short-term peak-shaving scheduling of a hydropower-dominated hydro-wind-solar photovoltaic hybrid system considering a shared multienergy coupling transmission channel," Applied Energy, Elsevier, vol. 372(C).
    8. Daohong Wei & Chunpeng Feng & Dong Liu, 2025. "Research on Economic Operation of Cascade Small Hydropower Stations Within Plants Based on Refined Efficiency Models," Energies, MDPI, vol. 18(4), pages 1-18, February.
    9. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    10. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    11. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    12. Cheng, Wenjie & Zhao, Zhipeng & Cheng, Chuntian & Yu, Zhihui & Gao, Ying, 2024. "Optimizing peak shaving operation in hydro-dominated hybrid power systems with limited distributional information on renewable energy uncertainty," Renewable Energy, Elsevier, vol. 237(PC).
    13. Zhou, Siyu & Han, Yang & Zalhaf, Amr S. & Chen, Shuheng & Zhou, Te & Yang, Ping & Elboshy, Bahaa, 2023. "A novel multi-objective scheduling model for grid-connected hydro-wind-PV-battery complementary system under extreme weather: A case study of Sichuan, China," Renewable Energy, Elsevier, vol. 212(C), pages 818-833.
    14. Jiang, Jianhua & Ming, Bo & Huang, Qiang & Guo, Yi & Shang, Jia’nan & Jurasz, Jakub & Liu, Pan, 2023. "A holistic techno-economic evaluation framework for sizing renewable power plant in a hydro-based hybrid generation system," Applied Energy, Elsevier, vol. 348(C).
    15. He, Mengjiao & Han, Shuo & Chen, Diyi & Zhao, Ziwen & Jurasz, Jakub & Mahmud, Md Apel & Liu, Pan & Deng, Mingjiang, 2024. "Optimizing cascade Hydropower-VRE hybrid systems: A novel approach addressing whole-process vibration to enhance operational safety," Energy, Elsevier, vol. 304(C).
    16. Fang, Zhou & Liao, Shengli & Cheng, Chuntian & Zhao, Hongye & Liu, Benxi & Su, Huaying, 2023. "Parallel improved DPSA algorithm for medium-term optimal scheduling of large-scale cascade hydropower plants," Renewable Energy, Elsevier, vol. 210(C), pages 134-147.
    17. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Lu, Jia & Cheng, Chuntian, 2023. "Short-term coordinated hybrid hydro-wind-solar optimal scheduling model considering multistage section restrictions," Renewable Energy, Elsevier, vol. 217(C).
    18. Wang, Zhenni & Tan, Qiaofeng & Wen, Xin & Su, Huaying & Fang, Guohua & Wang, Hao, 2025. "Capacity optimization of retrofitting cascade hydropower plants with pumping stations for renewable energy integration: A case study," Applied Energy, Elsevier, vol. 377(PC).
    19. Su, Chengguo & Wang, Lingshuang & Sui, Quan & Wu, Huijun, 2025. "Optimal scheduling of a cascade hydro-thermal-wind power system integrating data centers and considering the spatiotemporal asynchronous transfer of energy resources," Applied Energy, Elsevier, vol. 377(PA).
    20. Guo, Yi & Ming, Bo & Huang, Qiang & Jiang, Jianhua & Yu, Miao & San, Meiying & Cheng, Long & Jia, Rong, 2025. "Evaluating the flexibility supply and demand reliability of hydro–wind–PV–battery complementary systems under different consumption modes," Applied Energy, Elsevier, vol. 379(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224039392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.