IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v392y2025ics0306261925007536.html
   My bibliography  Save this article

A real-time scheduling framework of cascade hydropower-photovoltaic power complementary systems based on model predictive control

Author

Listed:
  • Su, Chengguo
  • Li, Li
  • Zhang, Taiheng
  • Sui, Quan
  • Yang, Yunbo

Abstract

The integration of photovoltaic (PV) power and hydropower has become an effective approach for facilitating the consumption of renewable energy. Improving the management and control of hydropower and PV power during real-time scheduling can help with meeting the grid's anticipated electricity demand. However, hedging against the inherent uncertainties of PV power output and runoff is a significant challenge. This paper proposes a real-time scheduling framework for cascade hydropower-photovoltaic power (CH-PVP) complementary systems based on model predictive control (MPC). A Wasserstein generative adversarial network (WGAN) is used to forecast the runoff and PV power output. On this basis, a real-time scheduling model for CH-PVP complementary systems is established which considers dynamic water delay time and hydropower unit vibration zones, and aims to minimize power deviation and reduce hydropower unit adjustments. This ensures optimal utilization of water resources and the safe operation of units, thereby improving system reliability. To ensure computational efficiency and meet the timeliness requirements of real-time scheduling, linearization techniques are employed to transform the model into a MILP model, enabling solution times within 1 min. The case study shows that: (1) The WGAN model achieves high prediction accuracy, effectively capturing the signature features of the PV power output and runoff processes. (2) Considering the dynamic water delay time can significantly increase system stability and prevent frequent unit adjustments. Compared to conditions when the water delay time is not considered or is simplified to a constant, the power deviation in CH-PVP complementary systems is reduced by 59.2 % and 49.2 %, respectively. (3) Sensitivity analysis indicates that slight increases in runoff and PV power output are beneficial for the coordinated operation of the CH-PVP system. However, system performance deteriorates significantly under extreme conditions where runoff and PV power output fluctuations exceed 30 %.

Suggested Citation

  • Su, Chengguo & Li, Li & Zhang, Taiheng & Sui, Quan & Yang, Yunbo, 2025. "A real-time scheduling framework of cascade hydropower-photovoltaic power complementary systems based on model predictive control," Applied Energy, Elsevier, vol. 392(C).
  • Handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007536
    DOI: 10.1016/j.apenergy.2025.126023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    2. Liao, Shengli & Liu, Zhanwei & Liu, Benxi & Cheng, Chuntian & Wu, Xinyu & Zhao, Zhipeng, 2021. "Daily peak shaving operation of cascade hydropower stations with sensitive hydraulic connections considering water delay time," Renewable Energy, Elsevier, vol. 169(C), pages 970-981.
    3. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    4. Yuan, Wenlin & Xin, Wenpeng & Su, Chengguo & Cheng, Chuntian & Yan, Denghua & Wu, Zening, 2022. "Cross-regional integrated transmission of wind power and pumped-storage hydropower considering the peak shaving demands of multiple power grids," Renewable Energy, Elsevier, vol. 190(C), pages 1112-1126.
    5. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).
    6. Su, Chengguo & Wang, Peilin & Yuan, Wenlin & Wu, Yang & Jiang, Feng & Wu, Zening & Yan, Denghua, 2022. "Short-term optimal scheduling of cascade hydropower plants with reverse-regulating effects," Renewable Energy, Elsevier, vol. 199(C), pages 395-406.
    7. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    8. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    9. Jing, Zhiqiang & Wang, Yimin & Chang, Jianxia & Wang, Xuebin & Zhou, Yong & Li, Liang & Tian, Yuyu, 2024. "Benefit compensation of hydropower-wind-photovoltaic complementary operation in the large clean energy base," Applied Energy, Elsevier, vol. 354(PA).
    10. Wang, Yanling & Wen, Xin & Su, Huaying & Qin, Jisen & Kong, Linghui, 2023. "Real-time dispatch of hydro-photovoltaic (PV) hybrid system based on dynamic load reserve capacity," Energy, Elsevier, vol. 285(C).
    11. Hans Ole Riddervold & Ellen Krohn Aasg{aa}rd & Lisa Haukaas & Magnus Korp{aa}s, 2021. "Internal hydro- and wind portfolio optimisation in real-time market operations," Papers 2102.10098, arXiv.org.
    12. Ma, Huixin & Zhang, Chu & Peng, Tian & Nazir, Muhammad Shahzad & Li, Yiman, 2022. "An integrated framework of gated recurrent unit based on improved sine cosine algorithm for photovoltaic power forecasting," Energy, Elsevier, vol. 256(C).
    13. Lai, Chunyang & Kazemtabrizi, Behzad, 2024. "A novel data-driven tighten-constraint method for wind-hydro hybrid power system to improve day-ahead plan performance in real-time operation," Applied Energy, Elsevier, vol. 371(C).
    14. Yuan, Wenlin & Zhang, Shijie & Su, Chengguo & Wu, Yang & Yan, Denghua & Wu, Zening, 2022. "Optimal scheduling of cascade hydropower plants in a portfolio electricity market considering the dynamic water delay," Energy, Elsevier, vol. 252(C).
    15. Wang, Peilin & Yuan, Wenlin & Su, Chengguo & Wu, Yang & Lu, Lu & Yan, Denghua & Wu, Zening, 2022. "Short-term optimal scheduling of cascade hydropower plants shaving peak load for multiple power grids," Renewable Energy, Elsevier, vol. 184(C), pages 68-79.
    16. Guo, Chenyu & Wang, Xin & Zheng, Yihui & Zhang, Feng, 2022. "Real-time optimal energy management of microgrid with uncertainties based on deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    17. Tan, Qiaofeng & Wen, Xin & Sun, Yuanliang & Lei, Xiaohui & Wang, Zhenni & Qin, Guanghua, 2021. "Evaluation of the risk and benefit of the complementary operation of the large wind-photovoltaic-hydropower system considering forecast uncertainty," Applied Energy, Elsevier, vol. 285(C).
    18. Yang, Jingxian & Liu, Junyong & Qiu, Gao & Liu, Jichun & Jawad, Shafqat & Zhang, Shuai, 2023. "A spatio-temporality-enabled parallel multi-agent-based real-time dynamic dispatch for hydro-PV-PHS integrated power system," Energy, Elsevier, vol. 278(PB).
    19. Riddervold, Hans Ole & Aasgård, Ellen Krohn & Haukaas, Lisa & Korpås, Magnus, 2021. "Internal hydro- and wind portfolio optimisation in real-time market operations," Renewable Energy, Elsevier, vol. 173(C), pages 675-687.
    20. Yuan, Wenlin & Wang, Xinqi & Su, Chengguo & Cheng, Chuntian & Liu, Zhe & Wu, Zening, 2021. "Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming," Energy, Elsevier, vol. 222(C).
    21. Xu, Bin & Zhu, Feilin & Zhong, Ping-an & Chen, Juan & Liu, Weifeng & Ma, Yufei & Guo, Le & Deng, Xiaoliang, 2019. "Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    2. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    3. Zhou, Siyu & Han, Yang & Zalhaf, Amr S. & Chen, Shuheng & Zhou, Te & Yang, Ping & Elboshy, Bahaa, 2023. "A novel multi-objective scheduling model for grid-connected hydro-wind-PV-battery complementary system under extreme weather: A case study of Sichuan, China," Renewable Energy, Elsevier, vol. 212(C), pages 818-833.
    4. Gong, Yu & Liu, Pan & Ming, Bo & Feng, Maoyuan & Huang, Kangdi & Wang, Yibo, 2022. "Identifying the functional form of operating rules for hydro–photovoltaic hybrid power systems," Energy, Elsevier, vol. 243(C).
    5. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    6. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Li, Gang & Liu, Lingjun, 2022. "Impacts of different wind and solar power penetrations on cascade hydroplants operation," Renewable Energy, Elsevier, vol. 182(C), pages 227-244.
    7. Shi, Yunhong & Wang, Honglei & Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2024. "Stochastic optimization of system configurations and operation of hybrid cascade hydro-wind-photovoltaic with battery for uncertain medium- and long-term load growth," Applied Energy, Elsevier, vol. 364(C).
    8. Wang, Zizhao & Li, Yang & Wu, Feng & Wu, Jiawei & Shi, Linjun & Lin, Keman, 2024. "Multi-objective day-ahead scheduling of cascade hydropower-photovoltaic complementary system with pumping installation," Energy, Elsevier, vol. 290(C).
    9. Ma, Chao & Liu, Lu, 2022. "Optimal capacity configuration of hydro-wind-PV hybrid system and its coordinative operation rules considering the UHV transmission and reservoir operation requirements," Renewable Energy, Elsevier, vol. 198(C), pages 637-653.
    10. Zhao, Hongye & Liao, Shengli & Ma, Xiangyu & Fang, Zhou & Cheng, Chuntian & Zhang, Zheng, 2024. "Short-term peak-shaving scheduling of a hydropower-dominated hydro-wind-solar photovoltaic hybrid system considering a shared multienergy coupling transmission channel," Applied Energy, Elsevier, vol. 372(C).
    11. Zhang, Junhao & Wang, Yimin & Wang, Xuebin & Guo, Aijun & Chang, Jianxia & Niu, Chen & Li, Zhehao & Wang, Liyuan & Ren, Chengqing, 2025. "Quantitative analysis and operation strategies for daily-regulation hydropower plants impacted by upstream plant," Energy, Elsevier, vol. 328(C).
    12. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Jurasz, Jakub & Zhang, Yi & Lu, Jia, 2023. "Exploring the transition role of cascade hydropower in 100% decarbonized energy systems," Energy, Elsevier, vol. 279(C).
    13. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    14. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    15. Yang, Zhikai & Liu, Pan & Cheng, Lei & Liu, Deli & Ming, Bo & Li, He & Xia, Qian, 2021. "Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China," Energy, Elsevier, vol. 236(C).
    16. Liu, Mao & Kong, Xiangyu & Lian, Jijian & Wang, Jimin & Yang, Bohan, 2025. "Distributionally robust coordinated day-ahead scheduling of Cascade pumped hydro energy storage system and DC transmission," Applied Energy, Elsevier, vol. 384(C).
    17. Su, Chengguo & Wang, Peilin & Yuan, Wenlin & Wu, Yang & Jiang, Feng & Wu, Zening & Yan, Denghua, 2022. "Short-term optimal scheduling of cascade hydropower plants with reverse-regulating effects," Renewable Energy, Elsevier, vol. 199(C), pages 395-406.
    18. Shi, Yunhong & Li, Chengjiang & Wang, Honglei & Wang, Xiaolin & Negnevitsky, Michael, 2025. "A novel scheduling strategy of a hybrid wind-solar-hydro system for smoothing energy and power fluctuations," Energy, Elsevier, vol. 320(C).
    19. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    20. Su, Chengguo & Wang, Lingshuang & Sui, Quan & Wu, Huijun, 2025. "Optimal scheduling of a cascade hydro-thermal-wind power system integrating data centers and considering the spatiotemporal asynchronous transfer of energy resources," Applied Energy, Elsevier, vol. 377(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.