IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i15p4989-5001.html
   My bibliography  Save this article

Influence of Guiding Curves in the Optimal Management of a Hydropower System

Author

Listed:
  • Maritza Arganis-Juárez
  • Rosalva Mendoza-Ramírez
  • Ramón Domínguez-Mora
  • Alma Hernández-Ruiz
  • Moisés Berezowsky-Verduzco

Abstract

Optimal operating policies for hydropower generation in a system of dams were obtained by means of a modified algorithm of stochastic dynamic programming that incorporates the guiding curve concept and other operating requirements defined by the Mexican agency in charge of electricity generation. These operating policies were used to simulate the long term system behavior and to analyze the influence of the guiding curves in the energy generation, the volume spilled and the possible deficit. The results show that by trying different curves it is possible to obtain a range of results that will enable decision makers to choose those that best fit their needs. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Maritza Arganis-Juárez & Rosalva Mendoza-Ramírez & Ramón Domínguez-Mora & Alma Hernández-Ruiz & Moisés Berezowsky-Verduzco, 2013. "Influence of Guiding Curves in the Optimal Management of a Hydropower System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 4989-5001, December.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:15:p:4989-5001
    DOI: 10.1007/s11269-013-0460-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0460-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0460-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Mousavi & K. Ponnambalam & F. Karray, 2005. "Reservoir Operation Using a Dynamic Programming Fuzzy Rule–Based Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 655-672, October.
    2. Chun-Tian Cheng & Wen-Chuan Wang & Dong-Mei Xu & K. Chau, 2008. "Optimizing Hydropower Reservoir Operation Using Hybrid Genetic Algorithm and Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 895-909, July.
    3. Leila Ostadrahimi & Miguel Mariño & Abbas Afshar, 2012. "Multi-reservoir Operation Rules: Multi-swarm PSO-based Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 407-427, January.
    4. Lorenzo Alfieri & Paolo Perona & Paolo Burlando, 2006. "Optimal Water Allocation for an Alpine Hydropower System Under Changing Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 761-778, October.
    5. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    6. Sabah Fayaed & Ahmed El-Shafie & Othman Jaafar, 2013. "Integrated Artificial Neural Network (ANN) and Stochastic Dynamic Programming (SDP) Model for Optimal Release Policy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3679-3696, August.
    7. Abdallah Ben Alaya & Abderrazek Souissi & Jamila Tarhouni & Kamel Ncib, 2003. "Optimization of Nebhana Reservoir Water Allocation by Stochastic Dynamic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(4), pages 259-272, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar A. de la Cruz Courtois & Maritza Liliana Arganis Juárez & Delva Guichard Romero, 2021. "Simulated Optimal Operation Policies of a Reservoir System Obtained with Continuous Functions Using Synthetic Inflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2249-2263, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed-Mohammad Hosseini-Moghari & Reza Morovati & Mohammad Moghadas & Shahab Araghinejad, 2015. "Optimum Operation of Reservoir Using Two Evolutionary Algorithms: Imperialist Competitive Algorithm (ICA) and Cuckoo Optimization Algorithm (COA)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3749-3769, August.
    2. Md. Hossain & A. El-shafie, 2013. "Intelligent Systems in Optimizing Reservoir Operation Policy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3387-3407, July.
    3. Tao Bai & Lianzhou Wu & Jian-xia Chang & Qiang Huang, 2015. "Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2751-2770, June.
    4. Wang Zhang & Pan Liu & Xizhen Chen & Li Wang & Xueshan Ai & Maoyuan Feng & Dedi Liu & Yuanyuan Liu, 2016. "Optimal Operation of Multi-reservoir Systems Considering Time-lags of Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 523-540, January.
    5. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    6. Onur Hınçal & A. Altan-Sakarya & A. Metin Ger, 2011. "Optimization of Multireservoir Systems by Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1465-1487, March.
    7. Maryam Ghashghaie & Safar Marofi & Hossein Marofi, 2014. "Using System Dynamics Method to Determine the Effect of Water Demand Priorities on Downstream Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5055-5072, November.
    8. Wang Zhang & Pan Liu & Xizhen Chen & Li Wang & Xueshan Ai & Maoyuan Feng & Dedi Liu & Yuanyuan Liu, 2016. "Optimal Operation of Multi-reservoir Systems Considering Time-lags of Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 523-540, January.
    9. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    10. Arvin Samadi-koucheksaraee & Iman Ahmadianfar & Omid Bozorg-Haddad & Seyed Amin Asghari-pari, 2019. "Gradient Evolution Optimization Algorithm to Optimize Reservoir Operation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 603-625, January.
    11. Mohsen Saadat & Keyvan Asghari, 2017. "Reliability Improved Stochastic Dynamic Programming for Reservoir Operation Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1795-1807, April.
    12. Tan, Qiao-feng & Lei, Xiao-hui & Wen, Xin & Fang, Guo-hua & Wang, Xu & Wang, Chao & Ji, Yi & Huang, Xian-feng, 2019. "Two-stage stochastic optimal operation model for hydropower station based on the approximate utility function of the carryover stage," Energy, Elsevier, vol. 183(C), pages 670-682.
    13. Shuo Ouyang & Jianzhong Zhou & Chunlong Li & Xiang Liao & Hao Wang, 2015. "Optimal Design for Flood Limit Water Level of Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 445-457, January.
    14. Pierre Bernhard & Marc Deschamps, 2017. "Kalman on dynamics and contro, Linear System Theory, Optimal Control, and Filter," Working Papers 2017-10, CRESE.
    15. Jones, Randall E. & Cacho, Oscar J., 2000. "A Dynamic Optimisation Model of Weed Control," 2000 Conference (44th), January 23-25, 2000, Sydney, Australia 123685, Australian Agricultural and Resource Economics Society.
    16. Voelkel, Michael A. & Sachs, Anna-Lena & Thonemann, Ulrich W., 2020. "An aggregation-based approximate dynamic programming approach for the periodic review model with random yield," European Journal of Operational Research, Elsevier, vol. 281(2), pages 286-298.
    17. Pam Norton & Ravi Phatarfod, 2008. "Optimal Strategies In One-Day Cricket," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(04), pages 495-511.
    18. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    19. Tan, Madeleine Sui-Lay, 2016. "Policy coordination among the ASEAN-5: A global VAR analysis," Journal of Asian Economics, Elsevier, vol. 44(C), pages 20-40.
    20. D. W. K. Yeung, 2008. "Dynamically Consistent Solution For A Pollution Management Game In Collaborative Abatement With Uncertain Future Payoffs," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 517-538.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:15:p:4989-5001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.