IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p325-d1566118.html
   My bibliography  Save this article

Methodology for the Automatic Generation of Optimization Models of Systems of Flexible Energy Resources

Author

Listed:
  • Lukas Peter Wagner

    (Institute of Automation Technology, Helmut Schmidt University, 22043 Hamburg, Germany)

  • Felix Gehlhoff

    (Institute of Automation Technology, Helmut Schmidt University, 22043 Hamburg, Germany)

  • Lasse Matthias Reinpold

    (Institute of Automation Technology, Helmut Schmidt University, 22043 Hamburg, Germany)

  • Georg Frey

    (Chair of Automation and Energy Systems, Saarland University, 66123 Saarbrücken, Germany)

  • Julian Jepsen

    (Institute of Materials Science, Helmut Schmidt University, 22043 Hamburg, Germany
    Institute of Hydrogen Technology, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany)

  • Alexander Fay

    (Chair of Automation, Ruhr University, 44801 Bochum, Germany)

Abstract

The integration of increasing shares of intermittent renewable energy necessitates flexibility in both energy generation and consumption. Typically, the operation of flexible energy resources is orchestrated through optimization models. However, the manual creation of these models is a complex and error-prone task, often requiring the expertise of domain specialists. This work introduces a methodology for the automatic generation of optimization models for systems of flexible energy resources to simplify the modeling process and increase the use of energy flexibility. This methodology utilizes a modular, generic model structure designed to depict systems of flexible energy resources. It incorporates algorithms for model parameter derivation from operational data and an information model that represents the system’s structure and dependencies of resources. The efficacy of this methodology is demonstrated in two case studies, highlighting its relevance and ability to significantly streamline the optimization modeling process by minimizing the need for manual intervention.

Suggested Citation

  • Lukas Peter Wagner & Felix Gehlhoff & Lasse Matthias Reinpold & Georg Frey & Julian Jepsen & Alexander Fay, 2025. "Methodology for the Automatic Generation of Optimization Models of Systems of Flexible Energy Resources," Energies, MDPI, vol. 18(2), pages 1-35, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:325-:d:1566118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/325/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/325/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manna, Carlo & Lahariya, Manu & Karami, Farzaneh & Develder, Chris, 2023. "A data-driven optimization framework for industrial demand-side flexibility," Energy, Elsevier, vol. 278(C).
    2. Wang, Yi & Cheng, Jiangnan & Zhang, Ning & Kang, Chongqing, 2018. "Automatic and linearized modeling of energy hub and its flexibility analysis," Applied Energy, Elsevier, vol. 211(C), pages 705-714.
    3. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Wanapinit, Natapon & Thomsen, Jessica & Kost, Christoph & Weidlich, Anke, 2021. "An MILP model for evaluating the optimal operation and flexibility potential of end-users," Applied Energy, Elsevier, vol. 282(PB).
    5. Kasper, Lukas & Schwarzmayr, Paul & Birkelbach, Felix & Javernik, Florian & Schwaiger, Michael & Hofmann, René, 2024. "A digital twin-based adaptive optimization approach applied to waste heat recovery in green steel production: Development and experimental investigation," Applied Energy, Elsevier, vol. 353(PB).
    6. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    7. Vincent Henkel & Lukas Peter Wagner & Maximilian Kilthau & Felix Gehlhoff & Alexander Fay, 2024. "A Multi-Agent Approach for the Optimized Operation of Modular Electrolysis Plants," Energies, MDPI, vol. 17(14), pages 1-33, July.
    8. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Matrix modelling of small-scale trigeneration systems and application to operational optimization," Energy, Elsevier, vol. 34(3), pages 261-273.
    9. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yue & Wei, Wei & Liu, Feng & Wu, Qiuwei & Mei, Shengwei, 2018. "Analyzing and validating the economic efficiency of managing a cluster of energy hubs in multi-carrier energy systems," Applied Energy, Elsevier, vol. 230(C), pages 403-416.
    2. Qin, Chun & Wang, Linqing & Han, Zhongyang & Zhao, Jun & Liu, Quanli, 2021. "Weighted directed graph based matrix modeling of integrated energy systems," Energy, Elsevier, vol. 214(C).
    3. Mancarella, Pierluigi & Chicco, Gianfranco & Capuder, Tomislav, 2018. "Arbitrage opportunities for distributed multi-energy systems in providing power system ancillary services," Energy, Elsevier, vol. 161(C), pages 381-395.
    4. Lai, Sau Man & Hui, Chi Wai, 2009. "Feasibility and flexibility for a trigeneration system," Energy, Elsevier, vol. 34(10), pages 1693-1704.
    5. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    6. Cheng, Yaohua & Zhang, Ning & Kirschen, Daniel S. & Huang, Wujing & Kang, Chongqing, 2020. "Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China," Applied Energy, Elsevier, vol. 261(C).
    7. Tie, Yingqi & Hu, Bo & Shao, Changzheng & Huang, Wei & Qi, Feng & Xie, Kaigui, 2023. "Integrated flexibility characterization and measurement of distributed multi-energy systems considering temporal coupling constraints," Energy, Elsevier, vol. 283(C).
    8. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    9. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    10. Rusche, Simon & Weissflog., Jan & Wenninger, Simon & Häckel, Björn, 2023. "How flexible are energy flexibilities? Developing a flexibility score for revenue and risk analysis in industrial demand-side management," Applied Energy, Elsevier, vol. 345(C).
    11. Ramos-Teodoro, Jerónimo & Rodríguez, Francisco & Berenguel, Manuel & Torres, José Luis, 2018. "Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example," Applied Energy, Elsevier, vol. 229(C), pages 537-550.
    12. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).
    13. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    14. Mauser, Ingo & Müller, Jan & Allerding, Florian & Schmeck, Hartmut, 2016. "Adaptive building energy management with multiple commodities and flexible evolutionary optimization," Renewable Energy, Elsevier, vol. 87(P2), pages 911-921.
    15. Davatgaran, Vahid & Saniei, Mohsen & Mortazavi, Seyed Saeidollah, 2018. "Optimal bidding strategy for an energy hub in energy market," Energy, Elsevier, vol. 148(C), pages 482-493.
    16. Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "Machine learning methods to assist energy system optimization," Applied Energy, Elsevier, vol. 243(C), pages 191-205.
    17. Ghanbari, Ali & Karimi, Hamid & Jadid, Shahram, 2020. "Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks," Energy, Elsevier, vol. 204(C).
    18. Andrea Costantino, 2023. "Development, Validation, and Application of Building Energy Simulation Models for Livestock Houses: A Systematic Review," Agriculture, MDPI, vol. 13(12), pages 1-28, December.
    19. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    20. Kakkar, Riya & Agrawal, Smita & Tanwar, Sudeep, 2024. "A systematic survey on demand response management schemes for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:325-:d:1566118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.