IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i12p2280-d1301123.html
   My bibliography  Save this article

Development, Validation, and Application of Building Energy Simulation Models for Livestock Houses: A Systematic Review

Author

Listed:
  • Andrea Costantino

    (Institute of Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s.n., 46022 Valencia, Spain)

Abstract

The need to improve the sustainability of intensive livestock farming has led to an increasing adoption of Building Energy Simulation (BES) models for livestock houses. However, a consolidated body of knowledge specifically dedicated to these models is lacking in literature. This gap represents a significant obstacle to their widespread application and scalability in research and industry. The aim of this work is to pave the way for scaling the adoption of BES models for livestock houses by providing a comprehensive analysis of their application, development, and validation. For this aim, a systematic review of 42 papers—selected from over 795 results from the initial database query—is carried out. The findings underscored a growing body of research that involves BES models for different purposes. However, a common approach in both model development and validation is still lacking. This issue could hinder their scalability as a standard practice, especially in industry, also considering the limitations of BES models highlighted in this work. This review could represent a solid background for future research since provides an up-to-date framework on BES models for livestock houses and identifies future research opportunities. Moreover, it contributes to increasing the reliability of BES models for livestock houses by providing some recommendations for their validation.

Suggested Citation

  • Andrea Costantino, 2023. "Development, Validation, and Application of Building Energy Simulation Models for Livestock Houses: A Systematic Review," Agriculture, MDPI, vol. 13(12), pages 1-28, December.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:12:p:2280-:d:1301123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/12/2280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/12/2280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shin, Hakjong & Kwak, Younghoon & Jo, Seng-Kyoun & Kim, Se-Han & Huh, Jung-Ho, 2023. "Development of an optimal mechanical ventilation system control strategy based on weather forecasting data for outdoor air cooling in livestock housing," Energy, Elsevier, vol. 268(C).
    2. Choi, Kwangwon & Park, Semi & Joe, Jaewan & Kim, Seon-In & Jo, Jae-Hun & Kim, Eui-Jong & Cho, Young-Hum, 2023. "Review of infiltration and airflow models in building energy simulations for providing guidelines to building energy modelers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 181(C).
    3. Alberti, Luca & Antelmi, Matteo & Angelotti, Adriana & Formentin, Giovanni, 2018. "Geothermal heat pumps for sustainable farm climatization and field irrigation," Agricultural Water Management, Elsevier, vol. 195(C), pages 187-200.
    4. Fei Qi & Hao Li & Xuedong Zhao & Jinjun Huang & Zhengxiang Shi, 2023. "Investigation on Minimum Ventilation, Heating, and Energy Consumption of Pig Buildings in China during Winter," Agriculture, MDPI, vol. 13(2), pages 1-15, January.
    5. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
    6. Omar, M.N. & Samak, A.A. & Keshek, M.H. & Elsisi, S.F., 2020. "Simulation and validation model for using the energy produced from broiler litter waste in their house and its requirement of energy," Renewable Energy, Elsevier, vol. 159(C), pages 920-928.
    7. Costantino, Andrea & Comba, Lorenzo & Cornale, Paolo & Fabrizio, Enrico, 2022. "Energy impact of climate control in pig farming: Dynamic simulation and experimental validation," Applied Energy, Elsevier, vol. 309(C).
    8. Dimitrios Tyris & Apostolos Gkountas & Panteleimon Bakalis & Panagiotis Panagakis & Dimitris Manolakos, 2023. "A Dynamic Heat Pump Model for Indoor Climate Control of a Broiler House," Energies, MDPI, vol. 16(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin, Hakjong & Kwak, Younghoon & Jo, Seng-Kyoun & Kim, Se-Han & Huh, Jung-Ho, 2023. "Development of an optimal mechanical ventilation system control strategy based on weather forecasting data for outdoor air cooling in livestock housing," Energy, Elsevier, vol. 268(C).
    2. Hannah Licharz & Peter Rösmann & Manuel S. Krommweh & Ehab Mostafa & Wolfgang Büscher, 2020. "Energy Efficiency of a Heat Pump System: Case Study in Two Pig Houses," Energies, MDPI, vol. 13(3), pages 1-20, February.
    3. Jan-Philipp Sasse & Evelina Trutnevyte, 2023. "A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    5. Fei Qi & Hao Li & Xuedong Zhao & Jinjun Huang & Zhengxiang Shi, 2023. "Investigation on Minimum Ventilation, Heating, and Energy Consumption of Pig Buildings in China during Winter," Agriculture, MDPI, vol. 13(2), pages 1-15, January.
    6. Matteo Antelmi & Francesco Turrin & Andrea Zille & Roberto Fedrizzi, 2023. "A New Type in TRNSYS 18 for Simulation of Borehole Heat Exchangers Affected by Different Groundwater Flow Velocities," Energies, MDPI, vol. 16(3), pages 1-23, January.
    7. Fei Qi & Xuedong Zhao & Zhengxiang Shi & Hao Li & Wanying Zhao, 2023. "Environmental Factor Detection and Analysis Technologies in Livestock and Poultry Houses: A Review," Agriculture, MDPI, vol. 13(8), pages 1-16, July.
    8. Tomasz Ząbkowski & Krzysztof Gajowniczek & Grzegorz Matejko & Jacek Brożyna & Grzegorz Mentel & Małgorzata Charytanowicz & Jolanta Jarnicka & Anna Olwert & Weronika Radziszewska & Jörg Verstraete, 2023. "Cluster-Based Approach to Estimate Demand in the Polish Power System Using Commercial Customers’ Data," Energies, MDPI, vol. 16(24), pages 1-21, December.
    9. Cristina Sáez Blázquez & David Borge-Diez & Ignacio Martín Nieto & Miguel Ángel Maté-González & Arturo Farfán Martín & Diego González-Aguilera, 2022. "Geothermal Heat Pumps for Slurry Cooling and Farm Heating: Impact and Carbon Footprint Reduction in Pig Farms," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    10. Omar, M.N. & Taha, A.T. & Samak, A.A. & Keshek, M.H. & Gomaa, E.M. & Elsisi, S.F., 2021. "Simulation and validation model of cooling greenhouse by solar energy (P V) integrated with painting its cover and its effect on the cucumber production," Renewable Energy, Elsevier, vol. 172(C), pages 1154-1173.
    11. Haopu Li & Haoming Li & Bugao Li & Jiayuan Shao & Yanbo Song & Zhenyu Liu, 2023. "Smart Temperature and Humidity Control in Pig House by Improved Three-Way K-Means," Agriculture, MDPI, vol. 13(10), pages 1-22, October.
    12. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2023. "Hindcasting to inform the development of bottom-up electricity system models: The cases of endogenous demand and technology learning," Applied Energy, Elsevier, vol. 340(C).
    13. Bartnik, Ryszard & Buryn, Zbigniew & Hnydiuk-Stefan, Anna & Kowalczyk, Tomasz, 2022. "Thermodynamic and economic comparative analyses of a hierarchic gas-gas combined heat and power (CHP) plant coupled with a compressor heat pump," Energy, Elsevier, vol. 244(PB).
    14. Chiemi Iba & Shun Takano & Shuichi Hokoi, 2018. "An Experiment on Heat Recovery Performance Improvements in Well-Water Heat-Pump Systems for a Traditional Japanese House," Energies, MDPI, vol. 11(5), pages 1-13, April.
    15. Blázquez, Cristina Sáez & Borge-Diez, David & Nieto, Ignacio Martín & Maté-González, Miguel Ángel & Martín, Arturo Farfán & González-Aguilera, Diego, 2021. "Investigating the potential of the slurry technology for sustainable pig farm heating," Energy, Elsevier, vol. 234(C).
    16. Costantino, Andrea & Comba, Lorenzo & Cornale, Paolo & Fabrizio, Enrico, 2022. "Energy impact of climate control in pig farming: Dynamic simulation and experimental validation," Applied Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:12:p:2280-:d:1301123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.