IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4490-d1731072.html
   My bibliography  Save this article

A Study on the Environmental and Economic Benefits of Flexible Resources in Green Power Trading Markets Based on Cooperative Game Theory: A Case Study of China

Author

Listed:
  • Liwei Zhu

    (State Grid Zhejiang Electric Power Company Jiaxing Power Supply Company, Jiaxing 314033, China)

  • Xinhong Wu

    (State Grid Zhejiang Integrated Energy Service Company, Hangzhou 311500, China)

  • Zerong Wang

    (State Grid Zhejiang Integrated Energy Service Company, Hangzhou 311500, China)

  • Yuexin Li

    (College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Lifei Song

    (College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Yongwen Yang

    (College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

Abstract

This paper addresses the synergy between environmental and economic benefits in the green power trading market by constructing a collaborative game model for environmental rights value and electricity energy value. Based on this, a model for maximizing the benefits of flexible resource operation is proposed. Through the combination of non-cooperative and cooperative games, the conflict and synergy mechanisms of multiple stakeholders are quantified, and the Shapley value allocation rule is designed to achieve Pareto optimality. Simultaneously, considering the spatiotemporal regulation capability of flexible resources, dynamic weight adjustment, cross-period environmental rights reserve, and risk diversification strategies are proposed. Simulation results show that under the scenario of a carbon price of 50 CNY/ton (≈7.25 USD/ton) and a peak–valley electricity price difference of 0.9 CNY/kWh (≈0.13 USD/kWh), when the environmental weight coefficient α = 0.5, the total revenue reaches 6.857 × 10 7 CNY (≈9.94 × 10 6 USD), with environmental benefits accounting for 90%, a 15.3% reduction in carbon emission intensity, and a 1.74-fold increase in energy storage cycle utilization rate. This research provides theoretical support for green power market mechanism design and resource optimization scheduling under “dual-carbon” goals.

Suggested Citation

  • Liwei Zhu & Xinhong Wu & Zerong Wang & Yuexin Li & Lifei Song & Yongwen Yang, 2025. "A Study on the Environmental and Economic Benefits of Flexible Resources in Green Power Trading Markets Based on Cooperative Game Theory: A Case Study of China," Energies, MDPI, vol. 18(17), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4490-:d:1731072
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wanessa Guedes & Lucas Deotti & Bruno Dias & Tiago Soares & Leonardo Willer de Oliveira, 2022. "Community Energy Markets with Battery Energy Storage Systems: A General Modeling with Applications," Energies, MDPI, vol. 15(20), pages 1-22, October.
    2. Luo, Chunlin & Zhou, Xiaoyang & Lev, Benjamin, 2022. "Core, shapley value, nucleolus and nash bargaining solution: A Survey of recent developments and applications in operations management," Omega, Elsevier, vol. 110(C).
    3. Lee, Chien-Chiang & Wang, Fuhao & Lou, Runchi & Wang, Keying, 2023. "How does green finance drive the decarbonization of the economy? Empirical evidence from China," Renewable Energy, Elsevier, vol. 204(C), pages 671-684.
    4. Fleischhacker, Andreas & Lettner, Georg & Schwabeneder, Daniel & Auer, Hans, 2019. "Portfolio optimization of energy communities to meet reductions in costs and emissions," Energy, Elsevier, vol. 173(C), pages 1092-1105.
    5. Wang, Wei & Sun, Bo & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2020. "An improved min-max power dispatching method for integration of variable renewable energy," Applied Energy, Elsevier, vol. 276(C).
    6. Pingkuo, Liu & Huan, Peng & Zhiwei, Wang, 2020. "Orderly-synergistic development of power generation industry: A China’s case study based on evolutionary game model," Energy, Elsevier, vol. 211(C).
    7. Song, Xiaoling & Wang, Yudong & Zhang, Zhe & Shen, Charles & Peña-Mora, Feniosky, 2021. "Economic-environmental equilibrium-based bi-level dispatch strategy towards integrated electricity and natural gas systems," Applied Energy, Elsevier, vol. 281(C).
    8. Bullich-Massagué, Eduard & Cifuentes-García, Francisco-Javier & Glenny-Crende, Ignacio & Cheah-Mañé, Marc & Aragüés-Peñalba, Mònica & Díaz-González, Francisco & Gomis-Bellmunt, Oriol, 2020. "A review of energy storage technologies for large scale photovoltaic power plants," Applied Energy, Elsevier, vol. 274(C).
    9. Simeoni, Patrizia & Nardin, Gioacchino & Ciotti, Gellio, 2018. "Planning and design of sustainable smart multi energy systems. The case of a food industrial district in Italy," Energy, Elsevier, vol. 163(C), pages 443-456.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Ning & Fan, Lurong, 2023. "Double recovery strategy of carbon for coal-to-power based on a multi-energy system with tradable green certificates," Energy, Elsevier, vol. 273(C).
    2. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    3. Sadettin Ergun & Abdullah Dik & Rabah Boukhanouf & Siddig Omer, 2025. "Large-Scale Renewable Energy Integration: Tackling Technical Obstacles and Exploring Energy Storage Innovations," Sustainability, MDPI, vol. 17(3), pages 1-31, February.
    4. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    5. Nawaz Edoo & Robert T. F. Ah King, 2021. "Techno-Economic Analysis of Utility-Scale Solar Photovoltaic Plus Battery Power Plant," Energies, MDPI, vol. 14(23), pages 1-22, December.
    6. Rausser, Gordon & Chebotareva, Galina & Strielkowski, Wadim & Smutka, Luboš, 2025. "Would Russian solar energy projects be possible without state support?," Renewable Energy, Elsevier, vol. 241(C).
    7. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    8. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    9. Lee, Chien-Chiang & Wang, Fuhao & Chang, Yu-Fang, 2023. "Towards net-zero emissions: Can green bond policy promote green innovation and green space?," Energy Economics, Elsevier, vol. 121(C).
    10. Angel L. Cedeño & Reinier López Ahuar & José Rojas & Gonzalo Carvajal & César Silva & Juan C. Agüero, 2022. "Model Predictive Control for Photovoltaic Plants with Non-Ideal Energy Storage Using Mixed Integer Linear Programming," Energies, MDPI, vol. 15(17), pages 1-21, September.
    11. Lee, Chien-Chiang & Wang, Chih-Wei & Liu, Fengyun, 2024. "Does green credit promote the performance of new energy companies and how? The role of R&D investment and financial development," Renewable Energy, Elsevier, vol. 235(C).
    12. Mariuzzo, Ivan & Fina, Bernadette & Stroemer, Stefan & Corinaldesi, Carlo & Raugi, Marco, 2025. "Grid-friendly optimization of energy communities through enhanced multiple participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    13. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    14. Shuchen Ni & Chun Feng & Handan Gou, 2023. "Nash-Bargaining Fairness Concerns under Push and Pull Supply Chains," Mathematics, MDPI, vol. 11(23), pages 1-20, November.
    15. Sahebi, Iman Ghasemian & Masoomi, Behzad & Gholian-Jouybari, Fatemeh & Hajiaghaei-Keshteli, Mostafa, 2025. "Overcoming challenges in the path to a hydrogen economy for energy supply chain transition," Applied Energy, Elsevier, vol. 393(C).
    16. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.
    17. Yue, Tingyi & Wang, Honglei & Li, Chengjiang & Hu, Yu-jie, 2024. "Optimization strategies for green power and certificate trading in China considering seasonality: An evolutionary game-based system dynamics," Energy, Elsevier, vol. 311(C).
    18. Chen, Yang & Mu, Huaizhong, 2023. "Natural resources, carbon trading policies and total factor carbon efficiency: A new direction for China’s economy," Resources Policy, Elsevier, vol. 86(PA).
    19. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    20. Jose A. García-Martínez & Ana Meca & G. Alexander Vergara, 2022. "Cooperative Purchasing with General Discount: A Game Theoretical Approach," Mathematics, MDPI, vol. 10(22), pages 1-20, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4490-:d:1731072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.