IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4449-d1729504.html
   My bibliography  Save this article

Large Temperature Difference Heat Pump System for Long-Distance Heat Transportation: Experimental Study and Feasibility Analysis

Author

Listed:
  • Qing Miao

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Minxia Li

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Chaobin Dang

    (Graduate School of Engineering, University of Fukui, Fukui 910-8505, Japan)

  • Beiran Hou

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Shigang Zhang

    (Beijing Qingjian Energy Technology Co., Ltd., Beijing 100084, China)

Abstract

With the increasing depletion of fossil fuels, it is urgent to build an efficient regional heating scheme. Long-distance heating transportation schemes are important for the integration and utilization of low-grade heat resources. It is worth noting that when implementing the long-distance heating transportation scheme, a heat pump system with large temperature differences and high flexibility is required. However, the conventional vapor compression heat pump system is generally based on a single-stage cycle construction, which has the problems of poor heating capacity and a narrow operation range. In this study, a novel large temperature difference heat pump system is proposed. The heat transfer process of the novel heat pump system is serrated, and the pressure ratio of the compressor is similar under different working conditions. Through experimental study, the energy efficiency performance of the system is explored. Taking the conventional heat pump as the comparison object, the annual performance of the system is analyzed. The results show that the novel system can reduce carbon emissions and operation costs by more than 50%.

Suggested Citation

  • Qing Miao & Minxia Li & Chaobin Dang & Beiran Hou & Shigang Zhang, 2025. "Large Temperature Difference Heat Pump System for Long-Distance Heat Transportation: Experimental Study and Feasibility Analysis," Energies, MDPI, vol. 18(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4449-:d:1729504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4449/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4449/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Obika, Echezona & Heberle, Florian & Brüggemann, Dieter, 2024. "Thermodynamic analysis of novel mixtures including siloxanes and cyclic hydrocarbons for high-temperature heat pumps," Energy, Elsevier, vol. 294(C).
    2. Dou, Pengbo & Jia, Teng & Chu, Peng & Dai, Yanjun & Shou, Chunhui, 2022. "Performance analysis of no-insulation long distance thermal transportation system based on single-stage absorption-resorption cycle," Energy, Elsevier, vol. 243(C).
    3. Zhang, Ce & Han, Zongwei & Dong, Jiaxiang & Li, Mengyi & Zhang, Yiqi & Li, Xiuming & Wen, Zhenwu & Wang, Qinghai, 2024. "A novel data center air conditioner and its application scheme balancing high-efficiency cooling and waste heat recovery: Environmental and economic analysis," Energy, Elsevier, vol. 291(C).
    4. Fang, Hao & Xia, Jianjun & Zhu, Kan & Su, Yingbo & Jiang, Yi, 2013. "Industrial waste heat utilization for low temperature district heating," Energy Policy, Elsevier, vol. 62(C), pages 236-246.
    5. Guo, Fang & Zhu, Xiaoyue & Li, Pengchao & Yang, Xudong, 2022. "Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system," Energy, Elsevier, vol. 239(PE).
    6. Demir, Hasan & Mobedi, Moghtada & Ülkü, Semra, 2008. "A review on adsorption heat pump: Problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2381-2403, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiaolin & Kong, Ying & Zhou, Yu & Liu, Dawei & Xia, Jianjun, 2024. "Case study on combined heat and water system for district heating in Beijing through recovery of industrial waste heat in Tangshan," Energy, Elsevier, vol. 300(C).
    2. Zhang, Nan & Liu, Gang & Man, Xiaoxin & Wang, Qingqin, 2025. "Climate and resource characteristics-based zoning of heat source retrofit for heating systems and implications for heat consumption of urban settlements in cold regions of China," Energy, Elsevier, vol. 314(C).
    3. Li, Pengchao & Guo, Fang & Li, Yongfei & Yang, Xuejing & Yang, Xudong, 2025. "Physics-informed neural network for real-time thermal modeling of large-scale borehole thermal energy storage systems," Energy, Elsevier, vol. 315(C).
    4. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    5. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).
    6. Hinkelman, Kathryn & Anbarasu, Saranya & Wetter, Michael & Gautier, Antoine & Zuo, Wangda, 2022. "A fast and accurate modeling approach for water and steam thermodynamics with practical applications in district heating system simulation," Energy, Elsevier, vol. 254(PA).
    7. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    8. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    9. Awuchi Chinaza Godswill & Awuchi Chibueze Gospel & Amagwula Ikechukwu Otuosorochi & Igwe Victory Somtochukwu, 2023. "Industrial And Community Waste Management: Global Perspective," American Journal of Physical Sciences, IPRJB, vol. 1(1), pages 1-16.
    10. Yang, Sheng & Shao, Xue-Feng & Luo, Jia-Hao & Baghaei Oskouei, Seyedmohsen & Bayer, Özgür & Fan, Li-Wu, 2023. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat," Energy, Elsevier, vol. 265(C).
    11. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    12. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
    13. Fritz, M. & Plötz, P. & Schebek, L., 2022. "A technical and economical comparison of excess heat transport technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Choi, Hyung Won & Jeong, Jinhee & Koo, Ja Ryong & Kim, Young & Kang, Yong Tae, 2025. "Proof of concept for unsteady dynamic model of sorption thermal battery with H2O/LiBr and universal methodology to optimize energy storage density," Energy, Elsevier, vol. 328(C).
    15. Markus Fritz & Ali Aydemir & Liselotte Schebek, 2022. "How Much Excess Heat Might Be Used in Buildings? A Spatial Analysis at the Municipal Level in Germany," Energies, MDPI, vol. 15(17), pages 1-17, August.
    16. Socci, Luca & Rocchetti, Andrea & Verzino, Antonio & Zini, Andrea & Talluri, Lorenzo, 2024. "Enhancing third-generation district heating networks with data centre waste heat recovery: analysis of a case study in Italy," Energy, Elsevier, vol. 313(C).
    17. Yuan, Meng & Vad Mathiesen, Brian & Schneider, Noémi & Xia, Jianjun & Zheng, Wen & Sorknæs, Peter & Lund, Henrik & Zhang, Lipeng, 2024. "Renewable energy and waste heat recovery in district heating systems in China: A systematic review," Energy, Elsevier, vol. 294(C).
    18. Wang, Mingtao & Chen, Pengji & Liu, Huanwei, 2024. "Analysis of the performance enhancement of dual-pressure organic flash cycle using a split-flow evaporator and an ejector driven by low-grade energy," Energy, Elsevier, vol. 312(C).
    19. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
    20. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4449-:d:1729504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.