IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp1184-1194.html
   My bibliography  Save this article

A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability

Author

Listed:
  • Courbon, Emilie
  • D'Ans, Pierre
  • Permyakova, Anastasia
  • Skrylnyk, Oleksandr
  • Steunou, Nathalie
  • Degrez, Marc
  • Frère, Marc

Abstract

The excellent matching between the sorption and desorption temperatures of hexahydrated SrBr2 and those required for solar heat storage for building applications, the high heat of reaction (67.5kJ/mol of water) coupled with the gain/loss of 5mol of water per mole of salt make this salt an appealing sorbent for solar thermal energy storage applications coupled to space heating. Due to the morphological instability of this salt, it is necessary to incorporate it in a porous matrix as a composite sorbent. A new composite material for thermochemical energy storage applications was developed. It consists of a mesoporous silica gel impregnated by strontium bromide with salt content equal to 58wt.%. The structure and the sorption properties of the composite were characterized by SEM-EDX, temperature dependent XRD, XRF, and N2 sorption measurements. The salt is homogeneously distributed inside the pores of the silica gel. Water sorption isotherms were measured between 20°C and 80°C, which enabled us to understand the sorption mechanism. A mathematical model was developed and used to fit the experimental data in order to predict the sorption behavior of the composite at different conditions (influence of temperature and pressure conditions on the cycle loading lift and energy storage density). The interest of using such a composite for thermal energy storage application is then discussed (thermal energy produced by solar collector and used for space heating). A high cycle loading lift of 0.22g/g is obtained corresponding to an energy storage capacity of 230Wh/kg and an energy storage density of 203kWh/m3 of packed bed composite (between 30°C and 80°C at 12.5mbar) is reported, with an excellent stability over 14 sorption/desorption cycles. The sorption kinetics of this composite is enhanced compared to pure salt. Test on a laboratory scale open type reactor gives a maximum specific thermal power of 200W/kg and a mean specific thermal power of 92W/kg at 30°C and 12.5mbar for an extent of reaction of 0.68.

Suggested Citation

  • Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1184-1194
    DOI: 10.1016/j.apenergy.2017.01.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2014. "Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance," Applied Energy, Elsevier, vol. 129(C), pages 177-186.
    2. Tulus, Victor & Boer, Dieter & Cabeza, Luisa F. & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2016. "Enhanced thermal energy supply via central solar heating plants with seasonal storage: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 181(C), pages 549-561.
    3. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    4. Yan, T. & Wang, R.Z. & Li, T.X. & Wang, L.W. & Fred, Ishugah T., 2015. "A review of promising candidate reactions for chemical heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 13-31.
    5. Zhao, Y.J. & Wang, R.Z. & Zhang, Y.N. & Yu, N., 2016. "Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat," Energy, Elsevier, vol. 115(P1), pages 129-139.
    6. Lefebvre, Dominique & Tezel, F. Handan, 2017. "A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 116-125.
    7. Dicaire, Daniel & Tezel, F. Handan, 2011. "Regeneration and efficiency characterization of hybrid adsorbent for thermal energy storage of excess and solar heat," Renewable Energy, Elsevier, vol. 36(3), pages 986-992.
    8. Michel, Benoit & Mazet, Nathalie & Mauran, Sylvain & Stitou, Driss & Xu, Jing, 2012. "Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed," Energy, Elsevier, vol. 47(1), pages 553-563.
    9. Demir, Hasan & Mobedi, Moghtada & Ülkü, Semra, 2008. "A review on adsorption heat pump: Problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2381-2403, December.
    10. Solé, Aran & Martorell, Ingrid & Cabeza, Luisa F., 2015. "State of the art on gas–solid thermochemical energy storage systems and reactors for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 386-398.
    11. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
    12. Zhang, Y.N. & Wang, R.Z. & Zhao, Y.J. & Li, T.X. & Riffat, S.B. & Wajid, N.M., 2016. "Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage," Energy, Elsevier, vol. 115(P1), pages 120-128.
    13. N’Tsoukpoe, Kokouvi Edem & Schmidt, Thomas & Rammelberg, Holger Urs & Watts, Beatriz Amanda & Ruck, Wolfgang K.L., 2014. "A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 124(C), pages 1-16.
    14. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    2. Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2023. "Modelling analysis of a solar-driven thermochemical energy storage unit combined with heat recovery," Renewable Energy, Elsevier, vol. 206(C), pages 722-737.
    3. Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
    4. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
    5. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    6. N’Tsoukpoe, Kokouvi Edem & Osterland, Thomas & Opel, Oliver & Ruck, Wolfgang K.L., 2016. "Cascade thermochemical storage with internal condensation heat recovery for better energy and exergy efficiencies," Applied Energy, Elsevier, vol. 181(C), pages 562-574.
    7. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    8. Tomasz Spietz & Rafał Fryza & Janusz Lasek & Jarosław Zuwała, 2025. "Thermochemical Energy Storage Based on Salt Hydrates: A Comprehensive Review," Energies, MDPI, vol. 18(10), pages 1-81, May.
    9. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Geyer, Philipp & Buchholz, Martin & Buchholz, Reiner & Provost, Mathieu, 2017. "Hybrid thermo-chemical district networks – Principles and technology," Applied Energy, Elsevier, vol. 186(P3), pages 480-491.
    11. Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
    12. N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    14. Gaeini, M. & Rouws, A.L. & Salari, J.W.O. & Zondag, H.A. & Rindt, C.C.M., 2018. "Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage," Applied Energy, Elsevier, vol. 212(C), pages 1165-1177.
    15. Salviati, Sergio & Carosio, Federico & Cantamessa, Francesco & Medina, Lilian & Berglund, Lars A. & Saracco, Guido & Fina, Alberto, 2020. "Ice-templated nanocellulose porous structure enhances thermochemical storage kinetics in hydrated salt/graphite composites," Renewable Energy, Elsevier, vol. 160(C), pages 698-706.
    16. N'Tsoukpoe, Kokouvi Edem & Restuccia, Giovanni & Schmidt, Thomas & Py, Xavier, 2014. "The size of sorbents in low pressure sorption or thermochemical energy storage processes," Energy, Elsevier, vol. 77(C), pages 983-998.
    17. Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2024. "Exploring a novel tubular-type modular reactor for solar-driven thermochemical energy storage," Renewable Energy, Elsevier, vol. 221(C).
    18. Liu, Xiao & Yang, Fangming & Liu, Xin & Wu, Yupeng, 2025. "A systematic evaluation of sorption-based thermochemical energy storage for building applications: Material development, reactor design, and system integration," Renewable Energy, Elsevier, vol. 245(C).
    19. Mehrabadi, Abbas & Farid, Mohammed, 2018. "New salt hydrate composite for low-grade thermal energy storage," Energy, Elsevier, vol. 164(C), pages 194-203.
    20. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1184-1194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.