IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225022546.html
   My bibliography  Save this article

Proof of concept for unsteady dynamic model of sorption thermal battery with H2O/LiBr and universal methodology to optimize energy storage density

Author

Listed:
  • Choi, Hyung Won
  • Jeong, Jinhee
  • Koo, Ja Ryong
  • Kim, Young
  • Kang, Yong Tae

Abstract

This study presents an unsteady dynamic model developed specifically to address limitations in conventional modeling of sorption thermal battery. The model introduces the concept of effective specific heat capacity to represent sensible and latent heat transfer under a single framework, and explicitly considers the transient evolution of vapor mass, pressure, and energy by treating the vapor domain as thermodynamically active unlike conventional quasi-steady models, which assume instantaneous vapor-liquid equilibrium and negligible vapor dynamics. Sorption thermal battery poses unique modeling challenges due to sharp transitions between subcooled and saturated solution regions. The presented model establishes a vapor-liquid equilibrium time scale as a function of chamber volume and hot water velocity, providing a boundary for the applicability of quasi-steady models. Experimental validation using a 1 kW prototype shows strong agreement with simulation results, achieving an energy storage density of 188 kWh/m3. This work not only resolves critical gaps in transient modeling but also proposes a universal methodology for optimizing energy storage density based on dimensionless time constants and vapor-liquid equilibrium dynamics. This provides a foundation for the accurate design and control of sorption thermal battery.

Suggested Citation

  • Choi, Hyung Won & Jeong, Jinhee & Koo, Ja Ryong & Kim, Young & Kang, Yong Tae, 2025. "Proof of concept for unsteady dynamic model of sorption thermal battery with H2O/LiBr and universal methodology to optimize energy storage density," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022546
    DOI: 10.1016/j.energy.2025.136612
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225022546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Min, Haye & Choi, Hyung Won & Jeong, Jaehui & Jeong, Jinhee & Kim, Young & Kang, Yong Tae, 2023. "Daily sorption thermal battery cycle for building applications," Energy, Elsevier, vol. 282(C).
    2. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    3. Choi, Hyung Won & Jeong, Jinhee & Kang, Yong Tae, 2024. "Optimal discharging of solar driven sorption thermal battery for building cooling applications," Energy, Elsevier, vol. 296(C).
    4. Lee, Geun Jeong & Lee, Jae Won & Choi, Hyung Won & Kim, Seonggon & Kang, Yong Tae, 2025. "CO2 thermochemical sorption battery driven by low temperature heat source for plus energy building application," Applied Energy, Elsevier, vol. 377(PA).
    5. Dou, Pengbo & Jia, Teng & Chu, Peng & Dai, Yanjun & Shou, Chunhui, 2022. "Performance analysis of no-insulation long distance thermal transportation system based on single-stage absorption-resorption cycle," Energy, Elsevier, vol. 243(C).
    6. Ding, Zhixiong & Wu, Wei, 2021. "A hybrid compression-assisted absorption thermal battery with high energy storage density/efficiency and low charging temperature," Applied Energy, Elsevier, vol. 282(PA).
    7. Moreno, Daniel & Ferro, Víctor R. & de Riva, Juan & Santiago, Rubén & Moya, Cristian & Larriba, Marcos & Palomar, José, 2018. "Absorption refrigeration cycles based on ionic liquids: Refrigerant/absorbent selection by thermodynamic and process analysis," Applied Energy, Elsevier, vol. 213(C), pages 179-194.
    8. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    9. Yu, N. & Wang, R.Z. & Lu, Z.S. & Wang, L.W. & Ishugah, T.F., 2014. "Evaluation of a three-phase sorption cycle for thermal energy storage," Energy, Elsevier, vol. 67(C), pages 468-478.
    10. Li, T.X. & Xu, J.X. & Yan, T. & Wang, R.Z., 2016. "Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage," Energy, Elsevier, vol. 107(C), pages 347-359.
    11. Ding, Zhixiong & Wu, Wei & Chen, Youming & Leung, Michael, 2020. "Dynamic characteristics and performance improvement of a high-efficiency double-effectthermal battery for cooling and heating," Applied Energy, Elsevier, vol. 264(C).
    12. Jeong, Jaehui & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2023. "Hybrid cooling and heating absorption heat pump cycle with thermal energy storage," Energy, Elsevier, vol. 283(C).
    13. Mendiburu, Andrés Z. & Roberts, Justo J. & Rodrigues, Letícia Jenisch & Verma, Sujit Kr, 2023. "Thermodynamic modelling for absorption refrigeration cycles powered by solar energy and a case study for Porto Alegre, Brazil," Energy, Elsevier, vol. 266(C).
    14. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    15. Seonggon Kim & Sunghun Lee & Jehyung Lee & Hyung Won Choi & Wonjoon Choi & Yong Tae Kang, 2024. "Passive isothermal film with self-switchable radiative cooling-driven water sorption layer for arid climate applications," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Hu, Tianle & Xie, Xiaoyun & Jiang, Yi, 2017. "Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system," Energy, Elsevier, vol. 140(P1), pages 912-921.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Hyung Won & Jeong, Jinhee & Kang, Yong Tae, 2024. "Optimal discharging of solar driven sorption thermal battery for building cooling applications," Energy, Elsevier, vol. 296(C).
    2. Ding, Zhixiong & Wu, Wei, 2022. "Type II absorption thermal battery for temperature upgrading: Energy storage heat transformer," Applied Energy, Elsevier, vol. 324(C).
    3. Wang, Cun & Bi, Yuehong, 2024. "Dynamic characteristics and performance analysis of a double-stage energy storage heat transformer with a large temperature lift," Energy, Elsevier, vol. 308(C).
    4. Ding, Zhixiong & Sui, Yunren & Lin, Haosheng & Luo, Xianglong & Wang, Huasheng & Chen, Ying & Liang, Yingzong & Wu, Wei, 2024. "Experimental study on a two-stage absorption thermal battery with absorption-enhanced generation for high storage density and extremely low charging temperature (∼50 °C)," Applied Energy, Elsevier, vol. 363(C).
    5. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Ding, Zhixiong & Wu, Wei, 2024. "Simulation of a multi-level absorption thermal battery with variable solution flow rate for adjustable cooling capacity," Energy, Elsevier, vol. 301(C).
    7. Min, Haye & Choi, Hyung Won & Jeong, Jaehui & Jeong, Jinhee & Kim, Young & Kang, Yong Tae, 2023. "Daily sorption thermal battery cycle for building applications," Energy, Elsevier, vol. 282(C).
    8. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Wu, Wei & Chen, Jianyong & Chen, Ying, 2025. "Dual-function absorption thermal battery embedded methanol-to-X system for seasonal energy dispatching: A dynamic parametric study," Energy, Elsevier, vol. 320(C).
    9. Ding, Zhixiong & Wu, Wei, 2025. "Dynamic characteristics and performance enhancement of two-stage absorption thermal battery for long-term renewable energy storage," Applied Energy, Elsevier, vol. 377(PD).
    10. Ding, Zhixiong & Wu, Wei, 2021. "A hybrid compression-assisted absorption thermal battery with high energy storage density/efficiency and low charging temperature," Applied Energy, Elsevier, vol. 282(PA).
    11. Lin, Yao & Xiao, Fu & Wang, Lingshi & Wang, Shengwei, 2024. "Experimental investigation and performance evaluation of a closed three-phase absorption thermal energy storage system," Energy, Elsevier, vol. 313(C).
    12. Ding, Zhixiong & Wu, Wei & Leung, Michael K.H., 2022. "On the rational development of advanced thermochemical thermal batteries for short-term and long-term energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    13. You, Jinfang & Gao, Jintong & Li, Renpeng & Wang, Ruzhu & Xu, Zhenyuan, 2025. "Air-source heat pump assisted absorption heat storage for discharging under low ambient temperature," Applied Energy, Elsevier, vol. 380(C).
    14. Dou, Pengbo & Jia, Teng & Chu, Peng & Dai, Yanjun, 2024. "Experimental investigation of two-stage NH3–H2O resorption heat storage system with solution concentration difference," Energy, Elsevier, vol. 304(C).
    15. Mehari, Abel & Xu, Z.Y. & Wang, R.Z., 2019. "Thermally-pressurized sorption heat storage cycle with low charging temperature," Energy, Elsevier, vol. 189(C).
    16. Xu, Z.Y. & Wang, R.Z., 2019. "Absorption seasonal thermal storage cycle with high energy storage density through multi-stage output," Energy, Elsevier, vol. 167(C), pages 1086-1096.
    17. Zhai, Chong & Wu, Wei, 2024. "A compact modular microchannel membrane-based absorption thermal energy storage system for highly efficient solar cooling," Energy, Elsevier, vol. 294(C).
    18. You, Jinfang & Gao, Jintong & Wang, Ruzhu & Xu, Zhenyuan, 2024. "High-density and anti-clogging three-phase absorption heat storage with crystallization management," Applied Energy, Elsevier, vol. 376(PA).
    19. Li, T.X. & Wu, S. & Yan, T. & Wang, R.Z. & Zhu, J., 2017. "Experimental investigation on a dual-mode thermochemical sorption energy storage system," Energy, Elsevier, vol. 140(P1), pages 383-394.
    20. Ding, Zhixiong & Wu, Wei, 2025. "Large-temperature-lift energy storage heat transformer for deep thermal energy utilization," Applied Energy, Elsevier, vol. 384(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.