IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4423-d1727770.html
   My bibliography  Save this article

Binary Grey Wolf Optimization Algorithm-Based Load Scheduling Using a Multi-Agent System in a Grid-Tied Solar Microgrid

Author

Listed:
  • Sujo Vasu

    (Department of Electrical and Electronics Engineering, Government Engineering College Thrissur, Affiliated to A P J Abdul Kalam Technological University, Thiruvananthapuram 695016, India)

  • P Ramesh Kumar

    (Department of Electrical and Electronics Engineering, Government Engineering College Wayanad, Affiliated to A P J Abdul Kalam Technological University, Thiruvananthapuram 695016, India
    These authors contributed equally to this work.)

  • E A Jasmin

    (Department of Electrical and Electronics Engineering, Government Engineering College Kozhikode, Affiliated to A P J Abdul Kalam Technological University, Thiruvananthapuram 695016, India
    These authors contributed equally to this work.)

Abstract

Microgrids play a crucial role in the development of future smart grids, with multiple interconnected microgrids forming large-scale multi-microgrid systems that operate as smart grids. Multi-agent system (MAS)-based control solutions are the most suitable for addressing such control challenges. This paper presents a demand-side management (DSM) strategy using a meta-heuristic optimization technique for minimizing the household energy consumption cost using MAS. The binary grey wolf optimization algorithm (BGWOA) optimizes load scheduling, reducing electricity costs, without compromising consumer preferences using time-of-day (ToD) tariffs. The communication agents and load agents comprise the MAS used to streamline load control operations. The results demonstrate that MAS-based load control using metaheuristic optimization techniques enhances demand-side management, thus minimizing the electricity costs while adhering to contradictory parameters like user preferences, appliance duration, and load atomicity. This makes renewable energy integration more cost-effective in smart grids, thereby ensuring affordable, reliable, and sustainable energy for all.

Suggested Citation

  • Sujo Vasu & P Ramesh Kumar & E A Jasmin, 2025. "Binary Grey Wolf Optimization Algorithm-Based Load Scheduling Using a Multi-Agent System in a Grid-Tied Solar Microgrid," Energies, MDPI, vol. 18(16), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4423-:d:1727770
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.
    2. Mbungu, Nsilulu T. & Bansal, Ramesh C. & Naidoo, Raj M. & Bettayeb, Maamar & Siti, Mukwanga W. & Bipath, Minnesh, 2020. "A dynamic energy management system using smart metering," Applied Energy, Elsevier, vol. 280(C).
    3. Wang, Can & Wang, Mingchao & Wang, Aoqi & Zhang, Xiaojia & Zhang, Jiaheng & Ma, Hui & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2025. "Multiagent deep reinforcement learning-based cooperative optimal operation with strong scalability for residential microgrid clusters," Energy, Elsevier, vol. 314(C).
    4. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    5. Wang, Can & Zhang, Jiaheng & Wang, Aoqi & Wang, Zhen & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2024. "Prioritized sum-tree experience replay TD3 DRL-based online energy management of a residential microgrid," Applied Energy, Elsevier, vol. 368(C).
    6. Zdenek Bradac & Vaclav Kaczmarczyk & Petr Fiedler, 2014. "Optimal Scheduling of Domestic Appliances via MILP," Energies, MDPI, vol. 8(1), pages 1-16, December.
    7. Pingliang Zeng & Jin Xu & Minchen Zhu, 2024. "Demand Response Strategy Based on the Multi-Agent System and Multiple-Load Participation," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    8. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen-Yu Chang & Pei-Fang Tsai, 2022. "Multiobjective Decision-Making Model for Power Scheduling Problem in Smart Homes," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    2. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    3. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    4. Roy, Anthony & Auger, François & Dupriez-Robin, Florian & Bourguet, Salvy & Tran, Quoc Tuan, 2020. "A multi-level Demand-Side Management algorithm for offgrid multi-source systems," Energy, Elsevier, vol. 191(C).
    5. Wang, Can & Liu, Yuzheng & Zhang, Yu & Xi, Lei & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2025. "Strategy for optimizing the bidirectional time-of-use electricity price in multi-microgrids coupled with multilevel games," Energy, Elsevier, vol. 323(C).
    6. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    7. Ramy Mohamed Hany & Tarek Mahmoud & El Said Abd El Aziz Osman & Abo El Fotouh Abd El Rehim & Hatem M Seoudy, 2024. "Optimal allocation of distributed energy storage systems to enhance voltage stability and minimize total cost," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-15, January.
    8. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    9. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    10. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    11. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    12. Claire M. Weiller & Michael G. Pollitt, 2013. "Platform markets and energy services," Working Papers EPRG 1334, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    14. Ovidiu Ivanov & Samiran Chattopadhyay & Soumya Banerjee & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2020. "A Novel Algorithm with Multiple Consumer Demand Response Priorities in Residential Unbalanced LV Electricity Distribution Networks," Mathematics, MDPI, vol. 8(8), pages 1-24, July.
    15. Liu, Yingqi, 2017. "Demand response and energy efficiency in the capacity resource procurement: Case studies of forward capacity markets in ISO New England, PJM and Great Britain," Energy Policy, Elsevier, vol. 100(C), pages 271-282.
    16. Antans Sauhats & Andrejs Utans & Jurijs Silinevics & Gatis Junghans & Dmitrijs Guzs, 2021. "Enhancing Power System Frequency with a Novel Load Shedding Method Including Monitoring of Synchronous Condensers’ Power Injections," Energies, MDPI, vol. 14(5), pages 1-21, March.
    17. Schachter, Jonathan A. & Mancarella, Pierluigi & Moriarty, John & Shaw, Rita, 2016. "Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation," Energy Policy, Elsevier, vol. 97(C), pages 439-449.
    18. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    19. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, vol. 13(15), pages 1-20, July.
    20. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4423-:d:1727770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.