IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics0360544225013738.html
   My bibliography  Save this article

Strategy for optimizing the bidirectional time-of-use electricity price in multi-microgrids coupled with multilevel games

Author

Listed:
  • Wang, Can
  • Liu, Yuzheng
  • Zhang, Yu
  • Xi, Lei
  • Yang, Nan
  • Zhao, Zhuoli
  • Lai, Chun Sing
  • Lai, Loi Lei

Abstract

Demand response (DR) based on the time-of-use (TOU) electricity price is an effective method for addressing the source‒load mismatch in microgrids by improving the load curve on the user side, thereby improving source‒load matching. However, the degree to which users respond to DR strategies is not only influenced by economic factors but also closely related to psychological factors. Therefore, considering the TOU electricity prices on both the generation side and the load side, this paper presents an optimization strategy for the bidirectional TOU electricity price for multi-microgrids (MMGs) coupled with multilevel games. First, the DR model based on the endowment effect is constructed with close attention to the influence of psychological factors on user behavior in the context of electric energy trading in an MMG system. A bidirectional TOU electricity pricing incentive mechanism is designed that simultaneously targets both power producers and users, promoting the active participation of various stakeholders in scheduling within MMG systems. Second, a multilevel differential game model is established, which takes power producers, microgrid operators (MGOs), and microgrid users as the main actors, couples a noncooperative game and a leader–follower game, achieves game balance by optimizing the bidirectional TOU electricity price, and makes appropriate decisions. Finally, the case study results demonstrate that the proposed strategy can optimize energy management, reduce the system's operating cost and the user's power consumption cost, and improve the power producers' economic benefit and user satisfaction.

Suggested Citation

  • Wang, Can & Liu, Yuzheng & Zhang, Yu & Xi, Lei & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2025. "Strategy for optimizing the bidirectional time-of-use electricity price in multi-microgrids coupled with multilevel games," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225013738
    DOI: 10.1016/j.energy.2025.135731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225013738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ling-Ling & Ji, Bing-Xiang & Liu, Guan-Chen & Yuan, Jian-Ping & Tseng, Shuan-Wei & Lim, Ming K. & Tseng, Ming-Lang, 2024. "Grid-connected multi-microgrid system operational scheduling optimization: A hierarchical improved marine predators algorithm," Energy, Elsevier, vol. 294(C).
    2. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    3. Liang, Ziwen & Mu, Longhua, 2024. "Multi-agent low-carbon optimal dispatch of regional integrated energy system based on mixed game theory," Energy, Elsevier, vol. 295(C).
    4. Wang, Can & Wang, Mingchao & Wang, Aoqi & Zhang, Xiaojia & Zhang, Jiaheng & Ma, Hui & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2025. "Multiagent deep reinforcement learning-based cooperative optimal operation with strong scalability for residential microgrid clusters," Energy, Elsevier, vol. 314(C).
    5. Liao, Wei & Xiao, Fu & Li, Yanxue & Peng, Jinqing, 2024. "Comparative study on electricity transactions between multi-microgrid: A hybrid game theory-based peer-to-peer trading in heterogeneous building communities considering electric vehicles," Applied Energy, Elsevier, vol. 367(C).
    6. Wang, Can & Zhang, Jiaheng & Wang, Aoqi & Wang, Zhen & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2024. "Prioritized sum-tree experience replay TD3 DRL-based online energy management of a residential microgrid," Applied Energy, Elsevier, vol. 368(C).
    7. Guo, Tianyu & Guo, Qi & Huang, Libin & Guo, Haiping & Lu, Yuanhong & Tu, Liang, 2023. "Microgrid source-network-load-storage master-slave game optimization method considering the energy storage overcharge/overdischarge risk," Energy, Elsevier, vol. 282(C).
    8. Zhao, Zhuoli & Xu, Jiawen & Lei, Yu & Liu, Chang & Shi, Xuntao & Lai, Loi Lei, 2025. "Robust dynamic dispatch strategy for multi-uncertainties integrated energy microgrids based on enhanced hierarchical model predictive control," Applied Energy, Elsevier, vol. 381(C).
    9. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    10. Cui, Jindong & Ran, Zihan & Shen, Wei & Xin, Yechun, 2024. "Study on multi-type flexible load control method of active distribution network based on dynamic time-sharing electricity price," Applied Energy, Elsevier, vol. 357(C).
    11. Wang, Can & Wang, Zhen & Chu, Sihu & Ma, Hui & Yang, Nan & Zhao, Zhuoli & Lai, Chun Sing & Lai, Loi Lei, 2024. "A two-stage underfrequency load shedding strategy for microgrid groups considering risk avoidance," Applied Energy, Elsevier, vol. 367(C).
    12. Guo, Zhilong & Xu, Wei & Yan, Yue & Sun, Mei, 2023. "How to realize the power demand side actively matching the supply side? ——A virtual real-time electricity prices optimization model based on credit mechanism," Applied Energy, Elsevier, vol. 343(C).
    13. Zhong, Wei & Dai, Zhe & Lin, Xiaojie & Pan, Guanchang, 2024. "Study on time-of-use pricing method for steam heating system considering user response characteristics and thermal storage capacity," Energy, Elsevier, vol. 296(C).
    14. Zhang, Meijuan & Yan, Qingyou & Guan, Yajuan & Ni, Da & Agundis Tinajero, Gibran David, 2024. "Joint planning of residential electric vehicle charging station integrated with photovoltaic and energy storage considering demand response and uncertainties," Energy, Elsevier, vol. 298(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Yushu & Ju, Liwei & Yang, Shenbo & Guo, Xinyu & Tan, Zhongfu, 2024. "A multi-objective robust optimal dispatch and cost allocation model for microgrids-shared hybrid energy storage system considering flexible ramping capacity," Applied Energy, Elsevier, vol. 369(C).
    2. Wang, Peng & Wu, Jiaqi & Ding, Yihong & Wang, Haili, 2025. "A time-series dynamic optimization model for distributed photovoltaic capacity planning considering the coupling of capacity and sales price," Renewable Energy, Elsevier, vol. 246(C).
    3. Lei Zhang & Yuxing Yuan & Su Yan & Hang Cao & Tao Du, 2025. "Advances in Modeling and Optimization of Intelligent Power Systems Integrating Renewable Energy in the Industrial Sector: A Multi-Perspective Review," Energies, MDPI, vol. 18(10), pages 1-50, May.
    4. Zhang, Chengyu & Rezgui, Yacine & Luo, Zhiwen & Jiang, Ben & Zhao, Tianyi, 2024. "Simultaneous community energy supply-demand optimization by microgrid operation scheduling optimization and occupant-oriented flexible energy-use regulation," Applied Energy, Elsevier, vol. 373(C).
    5. Hui Wang & Yao Xu, 2024. "Optimized Decision-Making for Multi-Market Green Power Transactions of Electricity Retailers under Demand-Side Response: The Chinese Market Case Study," Energies, MDPI, vol. 17(11), pages 1-15, May.
    6. Yanghe Liu & Hairong Zhang & Chuanfeng Wu & Mengxin Shao & Liting Zhou & Wenlong Fu, 2024. "A Short-Term Wind Speed Forecasting Framework Coupling a Maximum Information Coefficient, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Shared Weight Gated Memory Network with Im," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    7. Félix González & Paul Arévalo & Luis Ramirez, 2025. "Game Theory and Robust Predictive Control for Peer-to-Peer Energy Management: A Pathway to a Low-Carbon Economy," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
    8. Gheouany, Saad & Ouadi, Hamid & El Bakali, Saida, 2024. "Optimal active and reactive energy management for a smart microgrid system under the Moroccan grid pricing code," Energy, Elsevier, vol. 306(C).
    9. Suroso Isnandar & Jonathan F. Simorangkir & Kevin M. Banjar-Nahor & Hendry Timotiyas Paradongan & Nanang Hariyanto, 2024. "A Multiparadigm Approach for Generation Dispatch Optimization in a Regulated Electricity Market towards Clean Energy Transition," Energies, MDPI, vol. 17(15), pages 1-28, August.
    10. Ge, Haotian & Zhu, Yu & Zhong, Jiuming & Wu, Liang, 2024. "Day-ahead optimization for smart energy management of multi-microgrid using a stochastic-robust model," Energy, Elsevier, vol. 313(C).
    11. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    12. Wanting Yu & Xin Zhang & Mingli Cui & Tiantian Feng, 2024. "Construction and Application of the Double Game Model for Direct Purchase of Electricity by Large Consumers under Consideration of Risk Factors," Energies, MDPI, vol. 17(8), pages 1-24, April.
    13. Seshu Kumar, R. & Phani Raghav, L. & Koteswara Raju, D. & Singh, Arvind R., 2021. "Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids," Applied Energy, Elsevier, vol. 301(C).
    14. Yong Fang & Minghao Li & Yunli Yue & Zhonghua Liu, 2024. "Two-Tier Configuration Model for the Optimization of Enterprise Costs and User Satisfaction for Rural Microgrids," Mathematics, MDPI, vol. 12(20), pages 1-19, October.
    15. Zhao, Zhuoli & Xu, Jiawen & Lei, Yu & Liu, Chang & Shi, Xuntao & Lai, Loi Lei, 2025. "Robust dynamic dispatch strategy for multi-uncertainties integrated energy microgrids based on enhanced hierarchical model predictive control," Applied Energy, Elsevier, vol. 381(C).
    16. Bian, Yifan & Xie, Lirong & Ma, Lan & Cui, Chuanshi, 2025. "A novel two-stage energy sharing model for data center cluster considering integrated demand response of multiple loads," Applied Energy, Elsevier, vol. 384(C).
    17. Mohtavipour, Seyed Saeid, 2024. "Convex relaxation of two-stage network-constrained stochastic programming for CHP microgrid optimal scheduling," Energy, Elsevier, vol. 308(C).
    18. Phani Raghav, L. & Seshu Kumar, R. & Koteswara Raju, D. & Singh, Arvind R., 2022. "Analytic Hierarchy Process (AHP) – Swarm intelligence based flexible demand response management of grid-connected microgrid," Applied Energy, Elsevier, vol. 306(PB).
    19. Zhang, Wei & Wu, Jie, 2025. "Optimal real-time flexibility scheduling for community integrated energy system considering consumer psychology: A cloud-edge collaboration based framework," Energy, Elsevier, vol. 320(C).
    20. Uda Bala & Wei Li & Wenguo Wang & Yuying Gong & Yaheng Su & Yingshu Liu & Yi Zhang & Wei Wang, 2024. "The Sharing Energy Storage Mechanism for Demand Side Energy Communities," Energies, MDPI, vol. 17(21), pages 1-19, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225013738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.